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Abstract. Congestion control at bottleneck routers on the internet is a long stand-
ing problem. Many policies have been proposed for effective waysa jpack-

ets from the queues of these routers so that network endpoints will besid¢tn
share router capacity fairly and minimize the overflow of packets tryingntere

the queues. We study just how effective some of these queuing polieieghan
each network endpoint is a self-interested player with no informationtaheu
other players’ actions or preferences. By employing the adaptiveiteamodel

of evolutionary game theory, we study policies such as Droptail, RED tteend
greedy-flow-punishing policy proposed by Gao et al. [10] to find thehststi-
cally stable states: the states of the system that will be reached in the long run.

1 Introduction

Ever since the first congestion control algorithms for TCBpaints were introduced
in [12], the important problem of congestion control at lwteck routers on the In-
ternet has garnered wide-spread attention. Several tlgwihave been proposed for
queue management and scheduling of packets in routeiallinisuch algorithms were
designed under the assumption that all packets arrivinigeatduters come from TCP
complying sources that produce packet flows with certaimadtaristics: all flows that
become aware of congestion at the router (by seeing somesinfgackets dropped)
will respond by reducing their transmission rates. HoweV&#P flows are not the only
ones competing for available bandwidth or space in routeugs. UDP flows behave
in a completely different manner, tending to be more aggressithout sharing the
same congestion control profile as TCP. Moreover, the assoimripat future users will
continue using the current TCP protocol seems question8biee there is no central
authority governing their behavior, as users compete fodbédth, they may very well
change the way they respond to congestion.

Studying congestion control from a game theoretic perspgegtas therefore the
natural next step. Using a variety of models, game theorybleas used not only to
find Nash equilibria (NE) when users are self-interested ranters employ existing
methods, (e.g. FIFO with Droptail, or RED [8]) but also to idesnew router queuing
policies, aimed at reaching good social outcomes in theepeesof such users [10].
Such “good social outcomes” include the avoidance of cdimeat routers, and thus
avoidance of Internet congestion collapse, but also fagioé bandwidth sharing.

However, an approach commonly taken is to assume perfemtiation. Users
are assumed to know the transmission rates of others anatiyestion levels at the



router, and use this information to compute a best respamd®ptimize their utility.
Even though such assumptions are standard, and even mygc@sshe study of NE,
they are not likely to be met in a setting like the Internetthdut such assumptions,
can the equilibria be reached? Could there be a set of states,of them necessarily a
NE, such that the system gets essentially “trapped” cy@imgng the states in the set?
These are the questions we are aiming to answer in this work.

Using a simple yet general model of the game played by intemnépoints at in-
ternet bottleneck routers, we provide the first (to our krealge) analysis of this prob-
lem using stochastic stability, a classical solution cphdeom the adaptive learning
model of evolutionary game theory. Evolutionary game tiiscadaptive learning set-
ting is suited especially well for the game of internet eridfgcompeting for bottleneck
router capacity. In traditional game theoretic settingsheplayer must assume all other
players are perfectly rational, and must be fully informéeach other’'s actions and
preferences. When players are internet endpoints, suclireetgnts seem unreason-
able and quite unlikely to be met. In our evolutionary settinder adaptive learning’s
imitation play, players need only know what you would exghemn to know: what they
themselves experience in each round of play. Then they mggesheuristics to decide,
based on the results of their recent play, what strategy f@@nfor the next round.
The simplicity of the model but also its ability to cope witmited information, make
it particularly useful for modeling router congestion gane

To study our problem in this adaptive learning setting, weeaisew model proposed
by Efraimidis and Tsavlidis [7] called theindow gameThis model is not only simple,
but more general than previous models in which players arallysassumed to be TCP
endpoints with specific loss recovery properties. In thedain game, the endpoints
are modeled so that they can be thought of as using either WDP, or whatever
transmission protocol they choose. Thererameternet endpoints, each seeking to send
an unlimited amount of traffic. But all endpoints encounter $ame bottleneck router,
which has capacity’. Each of the endpoints is a player that chooses a strategy: an
integer-sized “window” between 0 and. The window size can be thought of as the
amount of the router’s capacity being requested by the play¢he number of packets
being sent by the player. The amount of capacity that theraatually allocates to each
player is then determined by the router’s queuing policythedpecified window sizes
(capacity requests) of the other users. The utility of a @lay defined as the number
of successfully sent packets, minus the number of droppekiepgitimes some factor
g > 0. Henceg represents the cost a player suffers by having one packepedo

We assume that this game is played repeatedly in rounds, ichvevery player
chooses a strategy to play using imitation dynamics: sampie outcomes of the
rounds of play in its memory, and then imitating the stratdwt served it best. How-
ever, with very small probability, each player fails to @il the imitation dynamics
and chooses a strategy at random. Then, loosely speakegetlofstochastically sta-
ble stategepresents the set of strategy profiles that have positeafility of being
played in the long run, or, the states that the system evigntedtles on. More details
can be found in Section 2.1.

Our Results. The policies we deal with here have been studied with resjoect
Nash Equilibria before (see the Related Work section forentatails), mainly though



assuming that the rates at which the sources send theirtgasla@escribed by a given
rule, for instance, assuming Poisson rates. In our work, &kenmo such assumption,
but employ thevindow gamef Efraimidis and Tsavlidis [7]. We believe that this model
is simple enough to allow interesting theoretical analysig still captures the essence
of the game played between competing internet endpointextéad the results in [7]
with respect to Nash Equilibria but also study the stochastbility of the underlying
games.

We begin by analyzing the two currently most well-known aridedy-used router
queuing policies: FIFO with Droptail and RED (Random Earlgt€ction) [8]. When
Droptail is used, all incoming packets are simply droppedeotie queue is full. We
show that for any reasonable valuegthe only NE and the only stochastically stable
state is the state where all players sé@écnr;l packets. This implies, for instance,
that for a large number of flows and any valuegf< 1 (¢ = 1 means that each
player is hurt by each lost packet about the same as the arttmngain from each
successful packet), the router is getting hit by roughlyertban twice as much traffic
as it has capacity. Next, we show that under RED queuing, icilwthe router starts
dropping packets preemptively as soon as its buffer reazlsegtain threshold’ < C,
things cannot get much better. For reasonable valugs thiere is a single NE, which
constitutes also the single stochastically stable stateyhich the congestion at the
router is still significant.

Finally we study a queue policy proposed by Gao et al. [10lliich any overflow
is compensated for by dropping the packets belonging to tbst slemanding flow.
This policy was designed, in a idealized setting, to have igusnNE such that the
router capacity is equally shared among all flows and overftoawoided. They also
studied a non-idealized setting in which flows do not havéggeinformation, and all
sources are restricted to fixed-rate Poisson rates exceptwdrich can be arbitrarily
aggressive. In this setting, they succeed at a more modest the source that can
be arbitrarily aggressive should not outperform the besddo source by much. In
this work we show that this policy can actually do even beitée show that even if
flows have no information about one another, and all of themeebitrarily adjust their
window sizes (so no flow is restricted to a fixed rate), theesyswill still converge to
the fair equilibrium under adaptive learning with imitatidynamics.

Even though the stochastically stable states for the qgenoticies we study turn
out to coincide with the NE, what our results indicate is thiofving: even in the
chaotic internet setting, where players have extremelytdisninformation about the
game and make instantaneous decisions, the NE will actbeligached.

Related Work. FIFO with Droptail is the traditional queue policy that hash em-
ployed widely in internet routers. As soon as the router gustull, all subsequent in-
coming packets are dropped. For more information on Drbatal its variants, see [2].
RED [8] works similarly, but starts dropping packets witheatain probability as soon
as the number of packets in the queue exceeds a threghald’. Both these policies
punish all flows in a similar manner, regardless of whethey tre “responsible” for
causing the overflow or not. Specifically, the expected ioactf the demand of each
flow that gets through the router is the same among all flovesethwith moderate de-



mands, and those with demands far exceeding their “faie$h@he result is that flows
with large demand can use more router capacity at the expétager-demand flows.

There have been methods suggested for inhibiting such ehakie Fair Queueing
algorithm [4] ensures the maxi-min fairness criterion:ngsiound-robin for selecting
the outgoing packets, every flow can at least obtain its $lagére.” Even though this is a
fair scheme, it comes at the cost of efficiency. It requirgaeste buffers for each queue
and a lot of book-keeping, making it unusable in practice. é&thod that achieves the
same result without the high computational cost at the reutas suggested in [19].
This method however, cannot be used independently in eathrras it depends on
receiving flow-specific information from other routers.

CHOKe [17], on the other hand, is a stateless queue managsoieEme, which can
be implemented in a router independently from what otheterswise. When a packet
arrives to the queue, itis compareditb > 1 packets chosen uniformly at random from
those currently in the queue; if it comes from the same scasany of them, then both
are dropped. There are both theoretical and experimentdibst[20, 15] suggesting its
effectiveness at preventing greedy (e.g. UDP) flows frorangfling moderate flows.
However, as the number of greedy flows varies, the paramiétarust also change in
order to protect the more moderate flows from losing theirdhare.

Gao et al [10] introduce a router queue management algarittmch, unlike Fair
Queuing, does not require separate buffers for each flowubder some assumptions,
achieves the same (fair) NE as maxi-min fairness. The maa igito keep track of the
“greediest” flow. Whenever there is an overflow, the algoritimops only packets that
belong to this flow? The Prince algorithm described in [7] works in a similar manner.
The algorithm in [10] was aiming to fulfill, among others, tfwlowing two objec-
tives. First, in an idealized environment of full infornati the profile corresponding
to maxi-min fairness is the unique NE. Second, removingaherfformation setup but
restricting all flows but one to being Poisson sources of fiagels, the unrestricted flow
has no way of obtaining a throughput much better than thdtebest Poisson flow.

There are several game theoretic results for congestiotratofor a better in-
troduction, we refer the reader to [18] and [14]. Akella et[&] study the equilibria
of a TCP game, in which all flows use the Additive Increase Mlittative Decrease
(AIMD) algorithm. This is the method currently employed b endpoints. The strat-
egy sets consist of the possible values for the parametere @lgorithm. They show
that even though the older TCP endpoint implementationsszahto efficient equilibria
even with FIFO Droptail and RED router queue policies, thisd longer the case with
newer implementations. They show that some measure of tmktefficiency” can be
established with a variant of CHOKe, assuming however thdloas are TCP. A lot
of work has been devoted to game theoretic models in whictioals originate from
Poisson sources and each source is allowed to vary the tissismrate [18, 5, 6]. The
inefficiency of NE is studied, mainly in the case of a singléleaeck router, but also in
more general networks [11]. Kesselman et al. [14] considrodel in which the flows
are explicitly deciding when to send new packets, instedthpficitly modifying their
transmission rates.

8 Only in case that the overflow is greater than the number of packets ofekdigst flow in
the queue, will packets from other flows be dropped as well.



An evolutionary game theoretic approach based on adagtareihg is used in [16]
to analyze a game in which users set transmission rates fionalty receiving multi-
media traffic. In [3], adaptive learning with imitation dyn&s was used to analyze a
load balancing game.

The Window Game model we study here was first proposed in [Agrevit was
used to find the NE in games between AIMD but also more genexasfl

2 Model, Notation, and Background

To model internet endpoints competing for capacity at aldroeck router, we use the
window game of [7]. LetV be the set of players§N| = n, with each player representing
an internet endpoint. The strategy set for each player is¢hef all possible window
sizes, integer values betweemandC, whereC is the capacity of the bottleneck router.
Let w; be the window size requested by playetet w = (wy,ws,...,wy,); wis a
strategy profilevector of the game. Leb_; refer to the vector of all the strategies in
w exceptw;. LetW = Z?:l w; and letW_, = W — w;. The bottleneck router uses
a (possibly randomized) queuing algorithm (like DroptRED, etc.), to decide how
many of each player’s packets to keep, and how many to drogrefdre the queuing
policy maps each strategy profile to a corresponding vector that indicates for each
playeri how many of itsw; packets are kept (in expectatiof)kep;, and how many
are droppedw; — keep;. As described in the previous sectign> 0 is a real value
that indicates how much detriment a lost packet causes to glager. Then for any
i =1...n, function ofi is m;(w) = (keep;) — g(w; — keep;).

A bestrespons® w_; for each playet is thenbr; (w_;) = arg max,,, m; (w;, w_;).

2.1 Adaptive Learning and Imitation Dynamics

We now more formally present the relevant aspects of evmiaty game theory’s adap-
tive learning model [9, 21, 22], as well as the imitation dynes of [13]. A related,
more detailed summary can be found in [3], in which adaptaiing and imitation
dynamics are applied to a load balancing game.

In the adaptive learning model with imitation dynamics, tea€ n players has a
finite memory of their own actions and payoffs in the previousounds of play. After
each round, each player samples (uniformly at randerj the m previous rounds
of play, and then in the next round, plays the strategy (inaase, the window size)
that yielded highest average payoff over the rounds tha¢ wampled. In this way, the
player is “imitating” the strategy that has served her welhe past.

These dynamics correspond to a Markov prodeswhere each state in the process
is the history of the last: rounds of play. Each play history is comprisedhoktrategy
profiles, and a state where all strategy profiles are the same is calledn@omorphic
state* The transition probabilities between states of the proaessietermined by the

4 For expository simplicity, if a monomorphic state hasas the strategy profile that fills its
history, we will sometimes abuse notation and us@ot just as the name of the strategy
profile, but when the context is clear, as the name of the monomorpléccstatainingw.



imitation dynamics described above.récurrent clasof a Markov process is a set of
states such that there is zero probability of leaving theosee a state in the set has
been reached, but positive probability of reaching anyestathe set from any other

state in the set. Josephson and Matros [13] prove the fallpabout the procesB.

Theorem 2.1 ([13]).If s/m < 1/2, a subset of states is a recurrent class if and only if
it is a singleton set containing a monomorphic state.

If we now suppose that in each round, each player with prdibaki> 0 does not
follow the imitation dynamics, but instead chooses a sfyatd random, we have modi-
fied the Markov process so that there is always positive fitiyaof eventually reach-
ing any state from any other state. Therefore, there is auenstationary distribution
over the states in this modified process. We refer to this fisatprocess as thger-
turbedMarkov processP¢ and the stationary distribution a$. Thestochastically sta-
ble state§SSS) are those statksn this modified process for whidhm,_.o ©¢(h) > 0.

A better replyis a unilateral strategy deviation by a player that gives pheyer at
least as high a payoff as the original strategy profile. f.és,a better reply for player
if m;(z,w_;) > m(w). A cusber sebr a set “closed under single better replies,” is a set
of strategy profiles such that any sequence of better replyesny sequence of players,
starting from any strategy profile in the set, always leadsather strategy profile that
is also in the set. Aninimal cusber set a cusber set such that if any strategy profile is
removed, the remaining set is no longer a cusber set.

Theorem 2.2 ([13]).Under imitation dynamics, the profiles in the set of stodoally
stable states are a minimal cusber set or a union of minimabeusets.

Note that the following corollary is an immediate conseqeeof Theorem 2.2.

Corollary 2.3. If a single strategy profile comprises the only minimal cusdet in a
game, then that is the only strategy profile in the set of ststibally stable states under
imitation dynamics.

For a more complete background on stochastic stability muitafion dynamics, we
refer the reader to [22, 13]. In what remains, we assumesthat< 1/2.

3 Droptail

FIFO queues with Droptail are widely used in Internet rosit®vhile the queue has not
reached its capacity, incoming packets are inserted in ikleoé the queue. As soon
as the capacity is reached, any new incoming packets argelopVe will start by
describing the window game model of Droptail, then dischesNE, and finally prove
that there is a single stochastically stable state thaesponds to the unique NE.
Remember that for any profite, we denote byV the total window size requested,
e, W = Zfil w;. Under the Droptail routing policy, whelW/ > C, the router
choosedV — C packets uniformly at random to be dropped. Therefore, fgrayer
1 with window sizew;, the expected number of packets;dhat will enter the queue is
w; - C/W, whilew; - (1 —C/W) will be dropped. Of course, whéiy < C no packets
will be dropped. This means that the expected payoff forgragan be expressed as



W(w) _ w; if Ww; S C— W_i (1)
! o wi-%—gwi(l—%)ifwi>C—W_i.
We note that when the total window size equals the capadaityui; + W_; = C,
then both pieces of the payoff function result in the sameffayherefore, foll = C
either of the two subcases can be used.

Definition 3.1. Defined, to be - ¢ =L

Efraimidis and Tsavlidis in [7] proved that, assumipg< n — 1,° the profile
(dg, ..., dg) is the uniguesymmetridNE. In fact, as the next theorem states, that is the
only NE for the casg < n — 1. The proof, which involves first determining the best
response function for each player, and then ruling out ttesipdity of all other NE,
can be found in the full version of this paper.

Theorem 3.2. If ¢ < n — 1, then the outcome in which each player's window size is
d, = L) s the only NE.

n2g

In the following, we will assume that < n — 1, since the case where> n — 1 is
of no practical relevance. We will now establish that theestd,, .. ., d,) is the only
SSS. Our proof uses the fact that any profile in a stochalstistble state is found in
a minimal cusber set (Theorem 2.2), along with the fact timaken Droptail the only
minimal cusber set in our game is the NE profile itself. We fijige two lemmas that
allow us to establish the latter fact, by showing there is teebeeply path from any
profile to the NE profile. Due to lack of space, we refer to tHeviersion of this work
for the proof of Lemma 3.3.

Lemma 3.3. Letw # (d, . ..,d,), W > C. Within at most two better replies, a profile
w’ can be reached, such that for akywith w;, = d,, wj, = d,4, and there is some
playeri, such thatw; # d, andw; = d,. Moreover,W’ > C.

Lemma 3.4. For anyw # (d,, .. .,d,), there is a finite sequence of better replies that
leads to the profiléd,, . .., d,).

Proof. We note first that il < C, then for any playef, playingC — W_; is a better
response thaw;. Hence we will assume th&t’ > C. Note that applying Lemma 3.3
tow # (dgy,...,dy), we will obtain somew’ such that stillli’ > C. Therefore, by
simply invoking Lemma 3.3 at mosttimes, we can see that there is a path of (in total)
at most2n + 1 better response moves framto the profile(d,, .. ., dy). 0

Theorem 3.5. For ¢ < n — 1, the state in which every player plays is the unique
stochastically stable state.

Proof. First of all, note thatl, is the unique better responsdia_; = (n—1)d,. There-
fore the profilea = (d,,...,d,) is a minimal cusber set. Moreover, by Lemma 3.4,
there is a better response path from any# a to a. Therefore any other cusber set
would have to contain, which implies there is no other minimal cusber set. Henge, b
Corollary 2.3,a is the only state that is stochastically stable. O

5 Given that the number of flows that share the capacity of a bottlenetérrisuarge, the case
thatg > n — 1 is not realistic, and thus of no practical interest. For completeness, tHerNE
the case thag > n — 1 are discussed in the full version of this work.



4 RED (Random Early Detection)

RED (Random Early Detection) [8] was meant to keep the aeecague size low. It
works similarly to Droptail, but starts dropping packetédse the queue is full. When
the total load at the router exceeds a system-defined minithcesholdT’, the router
begins dropping each new arriving packet with probabilitypwrtional to the load. Af-
ter total load exceeds a system-defined maximum threshwdpackets are dropped
with probability 1. (Note that when the maximum thresholdés toC, then once ca-
pacity is reached, RED behaves exactly like Droptail.)

To simplify our study, we will assume that the maximum thi@dhs C, but we
will leave the minimum threshol@’ as a free parameter. We then must model the RED
mechanism in the window game setup. Assume that the cugadt the queue 5 >
T. Then, according to RED, each new arriving packet will bepged with probability
%. Assume that whehl” packets arrive sequentially, the expected number of them
that enter the queue is In contrast to this sequential process where packetsasrie
by one, using the window game we assume that given a stratefilepo, all W packets
arrive at the same time. Each packet will be admitted to treigwvith probability;;;

(z packets are chosen uniformly at random)iMf< T, then all packets are admitted.

Lemma 4.1. Assume that RED is used anddebe a strategy profile such th&lt > T.
i) If W > W, whereWe = (Q — T)YHe_1 + T, then the queue size reaches C.
i) If T <W < Wg, thenT + ky, packets enter the queue, (and the probability for

any packet to be kept @@VLT) whereky, ~ (C-1T) (1 — e*%).

Proof. The proof uses the solution to the well-known coupon cotlegroblem. In
what follows we use the terikeptto refer to the event of a packet not being dropped.
We consider the case thit packets arrive sequentially. Consider the moment at which
the queue size becom@s+ i — 1, for somei, 1 < ¢ < C — T. Let X; be a random
variable that represents the number of packets that agitleet system until the queue
size reache§ + i (i.e., X; — 1 is the number of packets that arrive to the router and
get dropped until one is kept). According to the descrippdRED, whenT + i — 1
packets are already in the queue, the probability that aynawilving packet is dropped

is Z=%. This implies thaE[X;] = &5~ . Let H; be thejth harmonic number.
) We =T+E[LL" X| =T+ 205" o557 = (C-T)Her +T.

ii) The total number number of packetg, that enter the queue, out of the total
of W that arrive, is given as the maximukn such thatl” + E[Zle X,;] <W &

S S W T (C—T)(Hor — He—r—t) <W —T.

ApproximatingH; with In j we get:In(C — T — k) > In(C — T') — %=L which

. ~ w-T

givesky ~ (C —1T) (1 —e o T ) O
In order to simplify our presentation (and to allow cleamfotation of a best re-

sponse function), we will approximatey by kw = 3. Note thatky is also a

continuous function, whilé, = 0 andky, = C — T'; therefore, wher equalsT’



(respectively¥), the total number of packets entering the queug {sespectively,
(), in accordance to Lemma 4.1. The payoff function of floi now expressed as:

WﬁED(w): wr%fgwi(lf%) if T <W <W¢g
wi~%—gwi(1—%) if W>We
The best response function of RED differs according to theevaf g. In particular,
there are three possible ranges §orDue to space limitations, we will only discuss

_ c PRI
here the case whee c R, for R, = {m, n— 1], which is the most
practically relevant range of valuéshNe defer the other cases, as well as the proofs of
the following two theorems, to the full version of this work.

T(g+D)Ho-r—1) n-1

Definition 4.2. Definer, = oHo r—g—T e a

Theorem 4.3. If g € Ry, then there is a unique NE, such that = r,, for all <.

Theorem 4.4.1f g € R, then the only stochastically stable state under RED is the
state where all players set their window sizes o

The above theorems imply that under RED the system will cgevéo the unique
Nash Equilibrium. Given thag € R,, the total congestion will be less than the cor-
responding one in Droptail. Still, however, the overflow asgle: asn grows, since
% > 2L the total window size will be (roughly) at lea&T". And, asg
decreases to values outsidef®f, the congestion at RED NE can sometimes be even
greater than at the Droptail NE. More details can be foundnfull version of this

work.

5 “Fair” queue policy

In this section we study the queuing policy proposed by Geaal.ah [10]. The main
idea (similar also to the Prince algorithm of [7]) is that &se of congestion, the most
demanding flow is punished. Assuming that all players atg faformed of the other
players’ strategies, this policy was constructed so asve haunique NE in which all
players share the capacity equally. In a more realistinggtivhere the rates at which
other flows send packets are not globally known, the authisis t@ reach a less lofty
goal: if all flows but one have fixed rates, then the unregtdi¢fow cannot use up much
more of the router queue capacity at the expense of the fadedfiows. We will show
here that in fact, the fair equilibrium is also the only stastically stable state. This
implies that, even without fully informed players, the ai¢fum in [10] can achieve the
fair NE, even when all flows are allowed to be arbitrarily seggive.

The window game adaptation of Protocol | in [10] works asdats. For any profile
(w1, ,wy,), If W < C then for any flowi, all w; packets will enter the queue, i.e.

% In practiceT’ = \C, for some constank meaning that

WC&T*U is a decreasing
function onC tending to 0, ag&” grows large.



m;(w) = w;. On the other hand, " > C then letiy = arg max;ey{w;} (breaking
ties arbitrarily). Flowi, will be the one to be punished for the overflow, anajf <
W — C then the rest of the packets will be dropped according to @ibgn other
words,m;, = max{0,w;, — (W — C)} — g - min{w,,, W — C'}, while for anyi # i,

w; if w,, >W —-0C
Wy - W—w;,

— gw; (1 - W_Cwio) if w;,, <W —C'. 2

mi(w) =

The next theorem was stated in [7].
Theorem 5.1. Assumingy > 0, there is a unique NE in which all players pl&y/n.

The following theorem establishes the fact that the uniqieidNalso the only
stochastically stable state. We prove this by showing thatprofile (C/n, ...,C/n)
is the only minimal cusber set.

Theorem 5.2. If g > 0, then the only stochastically stable statéd/n, ...,C/n).

Proof. Let w = (C/n,---,C/n). We will show that the singleton s€to} is the
only minimal cusber set. Then we can conclude using Corollantia®o is the only
stochastically stable state. First note tfdt} is a minimal cusber set: any player de-
viating from & will be strictly decreasing her payoff. (Assume that a ptayeoves

to some valuer # C/n. If z < C/n, thenm;(z,w_;) = z < C/n = m;(w). If

x > C/n, thenz — C/n of her packets will be dropped and her payoff will decrease to
mi(z,w_;) = C/n — g(xz — C/n) < m;(w), sinceg > 0.)

We proceed now to showing that for any profile # 0, there is a finite better
response path t@. Assume first thatV’ > C and leti; = argmax;eny{w;}. Then
min{w;,, W — C} of iy’s packets get dropped. In that case it is at least as goag for
to playmax{0, w;, — (W — C)}, since the same amount @fs packets will enter the
queue as before, but without any being dropped. We will bélamove of typed.

Assume now thatV = C, butw # (C/n,---,C/n). Let j be the player with
the maximum window size iw, i.e.,j = arg;c, maxw;. The fact thath’ = C
andw # o, imply thatw; > C/n. Moreover there must be some playet j, with
wi < C/n. PlayingC/n is a better response ig sinceC'/n < w;, meaning thaj will
be the one to be punished for the overflow. (The new total winsiae cannot exceed
the capacity by more thafi'/n, implying only packets from flow will be dropped.)
Therefore,k gets more packets in the queue by changingto C/n, and still none
dropped. We will call this anove of type3.

Now the better response pathias constructed as follows: From any if W < C,
then any player can improve her payoff by increasing her aindize byC — W. We
then arrive at a profile’ whereW”’ = C. If W > C, after fewer tham moves of type
A, a strategy profilev’ is reached wher®”’ = C.

For anyw’ such thatV’ = C, if w’ # w, then a move of typd occurs in which
a player that inv’ played something less th&yn moves toC/n. This is immediately
followed by a move of typel in which a player that im’ was playing something greater
thanC'/n reduces her window size. 1"’ corresponds to the new profile reached, then
againW” = C. This alternation between moves of tydeand moves of typeé3 con-
tinues, untilw is reached. Note that once a player move£tn then she does not



change her window size anymore, meaning that the total nuoftsteps needed until
w is reached is finite. ad

We note that the conditiogp > 0 in the above theorem is necessary in order for the
cusber set to contain only the profi€/n,...,C/n). If g = 0, then a flow can deviate
from the profile(C/n,...,C/n) by increasing its window size while still obtaining
exactly the same payoff. We also note that unlike the resfil€ections 3 and 4, here,
the result in this section holds even if each flow has a diffevalue forg, a value that
can be arbitrarily small.

6 Discussion

While Droptail and RED have stochastically stable stateh Wigh congestion at the
bottleneck router, the Gao et al. policy leads to fair anctieffit use of the bottleneck
router capacity. Specifically, we've established that uiteptail queuing, the unique
stochastically stable state (and unique NE) is the profiletiich all players send a
window size ofd, = C(g+1)(n —1)/(gn?). This means thatif < (n—1)/(n+1),
each player will be sending at leasf’/n packets, which amounts to twice as many
total packets as the capacity allows.

Under RED, whery is reasonably large (i.e., fgre R,), the unique stochastically
stable state (and unique NE) is the profile where all playens! & window size of,
which is greater thaf'(g + 1)(n — 1)/(gn?). (Recall thatl' < C is the threshold
value at which RED begins preemptively dropping packetss i free parameter of
the RED protocol.) This means, analogously to the aboveudgson about Droptail,
thatifg < (n — 1)/(n 4+ 1) (which is close to 1 as grows large), players will be
sending at leas27'/n. This would imply that even with values gfnearly as large as
1, if deployers of RED routers sét to relatively large values, the gain with respect to
overflow, as compared to the case of Droptail, will be small.

On the other hand, the more discriminating Gao et al. prdtoan be safely de-
ployed without knowledge of the specific value pfthe endpoints each serdd/n as
long asg is positive. In addition, our results hold even when eaclygii&as its owry
value. Intuitively, this means the results apply even whenedndpoints are all of dif-
ferent types: well-behaved TCP flows, more aggressive TG fIODP flows, etc., as
long as dropped packets cause some loss to the flows, no mattesmall it is.

Finally we note the fact that the stochastically stableestah each case can be
reached with the players having very limited knowledgeytheed not be aware of
the actions of other players, or even of their numheEven though we assumed that
players choose a window size betw@eandC, any other sufficiently large upper bound
for the window sizes would have done just as well. In otherdspthe players need also
not be aware of the exact value of the router capacity
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