8 research outputs found

    X-ray spectra of XMM-Newton serendipitous medium flux sources

    Full text link
    We report on the results of a detailed analysis of the X-ray spectral properties of a large sample of sources detected serendipitously with the XMM-Newton observatory in 25 selected fields, for which optical identification is in progress. The survey covers a total solid angle of ~3.5 deg[superscript 2] and contains 1137 sources with ~10[superscript -15] 10[superscript 43] erg s[superscript -1], and therefore classified as type 2 AGNs) is significantly higher (40%), with a hint of moderately higher columns. After correcting for absorption, we do not find evidence for a redshift evolution of the underlying power law index of BLAGNs, which stays roughly constant at Γ ~ 1.9, with intrinsic dispersion of 0.4. A small fraction (~7%) of BLAGNs and NELGs require the presence of a soft excess, that we model as a black body with temperature ranging from 0.1 to 0.3 keV. Comparing our results on absorption to popular X-ray background synthesis models, we find absorption in only ~40% of the sources expected. This is due to a deficiency of heavily absorbed sources (with N[subscript H] ~ 10[superscript 22] – 10[superscript 24] cm[superscript -2]) in our sample in comparison with the models. We therefore conclude that the synthesis models require some revision in their specific parameters

    Average Fe Kα emission from distant AGN

    Full text link
    Context. One of the most important parameters in the XRB (X-ray background) synthesis models is the average efficiency of accretion onto SMBH (super-massive black holes). This can be inferred from the shape of broad relativistic Fe lines seen in X-ray spectra of AGN (active galactic nuclei). Several studies have tried to measure the mean Fe emission properties of AGN at different depths with very different results. Aims. We compute the mean Fe emission from a large and representative sample of AGN X-ray spectra up to redshift ~3.5. Methods. We developed a method of computing the rest-frame X-ray average spectrum and applied it to a large sample (more than 600 objects) of type 1 AGN from two complementary medium sensitivity surveys based on XMM-Newton data, the AXIS and XWAS samples. This method makes use of medium-to-low quality spectra without needing to fit complex models to the individual spectra but with computing a mean spectrum for the whole sample. Extensive quality tests were performed by comparing real to simulated data, and a significance for the detection of any feature over an underlying continuum was derived. Results. We detect with a 99.9% significance an unresolved Fe Kα\alpha emission line around 6.4 keV with an EW ~ 90 eV, but we find no compelling evidence of any significant broad relativistic emission line in the final average spectrum. Deviations from a power law around the narrow line are best represented by a reflection component arising from cold or low-ionization material. We estimate an upper limit for the EW of any relativistic line of 400 eV at a 3σ\sigma confidence level. We also marginally detect the so-called Iwasawa-Taniguchi effect on the EW for the unresolved emission line, which appears weaker for higher luminosity AGN. Conclusions. We computed an upper limit for the average relativistic Fe Kα\alpha line contribution that is significantly lower than previously reported values from similar analyses. Our results, however, are in excellent agreement with individual analyses of local AGN samples. We attribute this difference either to our more sophisticated method of modeling the underlying continuum, to intrinsic differences in source populations, and/or to the uneven data quality of the individual spectra of the various samples

    X-ray selected BALQSOs

    Full text link
    We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray selected BALQSOs, have a mean value of 〈αOX〉 = 1.69 ± 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger αOX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically-selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550Å

    X-ray selected BALQSOs

    Full text link
    We study a sample of six X-ray selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray selected BALQSOs, have a mean value of 〈αOX〉 = 1.69 ± 0.05, which is similar to that found for X-ray selected and optically selected non-BAL QSOs of similar ultraviolet luminosity. In contrast, optically-selected BALQSOs typically have much larger αOX and so are characterised as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically-selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550Å

    X-ray-selected broad absorption line quasi-stellar objects

    Full text link
    We study a sample of six X-ray-selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM–Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray-selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray-selected BALQSOs, have a mean value of 〈αOX〉 = 1.69 ± 0.05, which is similar to that found for X-ray-selected and optically selected non-BAL QSOs of a similar ultraviolet luminosity. In contrast, optically selected BALQSOs typically have much larger αOX and so are characterized as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550 Å

    The XMM-Newton bright serendipitous survey - Identification and optical spectral properties

    Get PDF
    Aims.We present the optical classification and redshift of 348 X-ray selected sources from the XMM-Newton Bright Serendipitous Survey (XBS), which contains a total of 400 objects (identification level = 87%). About 240 are new identifications. In particular, we discuss in detail the classification criteria adopted for the active galactic nuclei (AGNs) population. Methods.By means of systematic spectroscopic campaigns using various telescopes and through the literature search, we have collected an optical spectrum for the large majority of the sources in the XBS survey and applied a well-defined classification "flow chart". Results.We find that the AGNs represent the most numerous population at the flux limit of the XBS survey (~10-13 erg cm-2 s-1) constituting 80% of the XBS sources selected in the 0.5-4.5 keV energy band and 95% of the "hard" (4.5-7.5 keV) selected objects. Galactic sources populate the 0.5-4.5 keV sample significantly (17%) and only marginally (3%) the 4.5-7.5 keV sample. The remaining sources in both samples are clusters/groups of galaxies and normal galaxies (i.e. probably not powered by an AGN). Furthermore, the percentage of type 2 AGNs (i.e. optically absorbed AGNs with AV>2A_{\rm V}>2 mag) dramatically increases going from the 0.5-4.5 keV sample ( f=NAGN2/NAGN=7f=N_{\rm AGN 2}/N_{\rm AGN}=7%) to the 4.5-7.5 keV sample (f=32%). We finally propose two simple diagnostic plots that can be easily used to obtain the spectral classification for relatively low-redshift AGNs even if the quality of the spectrum is not good

    The X-ray source content of the XMM-Newton Galactic plane survey

    Get PDF
    We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic plane survey. In addition to photometric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6 m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS, and GLIMPSE catalogues to advance the identification process. Active coronae account for 16 of the 30 positively or tentatively identified X-ray sources and exhibit the softest X-ray spectra. Many of the identified hard X-ray sources are associated with massive stars, possible members of binary systems and emitting at intermediate X-ray luminosities of 1032−34 erg s-1. Among these are (i) a very absorbed, likely hyper-luminous star with X-ray/optical spectra and luminosities comparable to those of η Carina; (ii) a new X-ray-selected WN8 Wolf-Rayet star in which most of the X-ray emission probably arises from wind collision in a binary; (iii) a new Be/X-ray star belonging to the growing class of γ-Cas analogues; and (iv) a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25, has a counterpart of moderate optical luminosity that exhibits HeII λ4686 and Bowen CIII-NIII emission lines, suggesting that this may be a quiescent or X-ray shielded low mass X-ray binary, although its X-ray properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system displaying strong X-ray variability. The soft (0.4–2.0 keV) band log N(>S) − log S curve is completely dominated by active stars in the flux range of 1 × 10-13 to 1 × 10-14 erg cm-2 s-1. Several active coronae are also detected above 2 keV suggesting that the population of RS CVn binaries contributes significantly to the hard X-ray source population. In total, we are able to identify a large fraction of the hard (2–10 keV) X-ray sources in the flux range of 1 × 10-12 to 1 × 10-13 erg cm-2 s-1 with Galactic objects at a rate consistent with what is expected for the Galactic contribution alone

    The XMM-Newton Wide Angle Survey (XWAS)

    Get PDF
    Aims. This programme is aimed at obtaining one of the largest X-ray selected samples of identified active galactic nuclei to date in order to characterise such a population at intermediate fluxes, where most of the Universe’s accretion power originates. We present the XMM-Newton Wide Angle Survey (XWAS), a new catalogue of almost a thousand X-ray sources spectroscopically identified through optical observations. Methods. A sample of X-ray sources detected in 68 XMM-Newton pointed observations was selected for optical multi-fibre spectroscopy. Optical counterparts and corresponding photometry of the X-ray sources were obtained from the SuperCOSMOS Sky Survey. Candidates for spectroscopy were initially selected with magnitudes down to R ∼ 21, with preference for X-ray sources having a flux F0.5−4.5 keV ≥ 10−14 erg s−1 cm−2. Optical spectroscopic observations were made using the Two Degree Field of the Anglo Australian Telescope, and the resulting spectra were classified based on optical emission lines. Results. We have identified through optical spectroscopy 940 X-ray sources over Ω ∼ 11.8 deg2 of the sky. Source populations in our sample can be summarised as 65% broad line active galactic nuclei (BLAGN), 16% narrow emission line galaxies (NELGs), 6% absorption line galaxies (ALGs) and 13% stars. An active nucleus is also likely to be present in the large majority of the X-ray sources spectroscopically classified as NELGs or ALGs. Sources lie in high-galactic latitude (|b| > 20 deg) XMM-Newton fields mainly in the southern hemisphere. Owing to the large parameter space in redshift (0 ≤ z ≤ 4.25) and flux (10−15 ≤ F0.5−4.5 keV ≤ 10−12 erg s−1 cm−2) covered by the XWAS this work provides an excellent resource for the further study of subsamples and particular cases. The overall properties of the extragalactic objects are presented in this paper. These include the redshift and luminosity distributions, optical and X-ray colours and X-ray-to-optical flux ratios
    corecore