1,805 research outputs found

    Total Synthesis of Mycinolide IV and Path‐Scouting for Aldgamycin N

    Get PDF
    Proof‐of‐concept is provided that a large estate of 16‐membered macrolide antibiotics can be reached by a “unified” approach. The key building block was formed on scale by an asymmetric vinylogous Mukaiyama aldol reaction; its alkene terminus was then converted either into the corresponding methyl ketone by Wacker oxidation or into a chain‐extended aldehyde by catalyst‐controlled branch‐selective asymmetric hydroformylation. These transformations ultimately opened access to two structurally distinct series of macrolide targets. Notable late‐stage maneuvers comprise a rare example of a ruthenium‐catalyzed redox isomerization of an 1,3‐enyne‐5‐ol into a 1,3‐diene‐5‐one derivative, as well as the elaboration of a tertiary propargylic alcohol into an acyloin by trans‐hydrostannation/Chan‐Lam‐type coupling. Moreover, this case study illustrates the underutilized possibility of forging complex macrolactone rings by transesterification under essentially neutral conditions

    Federated Continual Learning to Detect Accounting Anomalies in Financial Auditing

    Full text link
    The International Standards on Auditing require auditors to collect reasonable assurance that financial statements are free of material misstatement. At the same time, a central objective of Continuous Assurance is the real-time assessment of digital accounting journal entries. Recently, driven by the advances in artificial intelligence, Deep Learning techniques have emerged in financial auditing to examine vast quantities of accounting data. However, learning highly adaptive audit models in decentralised and dynamic settings remains challenging. It requires the study of data distribution shifts over multiple clients and time periods. In this work, we propose a Federated Continual Learning framework enabling auditors to learn audit models from decentral clients continuously. We evaluate the framework's ability to detect accounting anomalies in common scenarios of organizational activity. Our empirical results, using real-world datasets and combined federated continual learning strategies, demonstrate the learned model's ability to detect anomalies in audit settings of data distribution shifts.Comment: 6 pages (excl. appendix), 5 figures, 1 table, preprint version, currently under revie

    CID: Chemistry In Disks VII. First detection of HC3N in protoplanetary disks

    Full text link
    Molecular line emission from protoplanetary disks is a powerful tool to constrain their physical and chemical structure. Nevertheless, only a few molecules have been detected in disks so far. We take advantage of the enhanced capabilities of the IRAM 30m telescope by using the new broad band correlator (FTS) to search for so far undetected molecules in the protoplanetary disks surrounding the TTauri stars DM Tau, GO Tau, LkCa 15 and the Herbig Ae star MWC 480. We report the first detection of HC3N at 5 sigma in the GO Tau and MWC 480 disks with the IRAM 30-m, and in the LkCa 15 disk (5 sigma), using the IRAM array, with derived column densities of the order of 10^{12}cm^{-2}. We also obtain stringent upper limits on CCS (N < 1.5 x 10^{12} cm^{-3}). We discuss the observational results by comparing them to column densities derived from existing chemical disk models (computed using the chemical code Nautilus) and based on previous nitrogen and sulfur-bearing molecule observations. The observed column densities of HC3N are typically two orders of magnitude lower than the existing predictions and appear to be lower in the presence of strong UV flux, suggesting that the molecular chemistry is sensitive to the UV penetration through the disk. The CCS upper limits reinforce our model with low elemental abundance of sulfur derived from other sulfur-bearing molecules (CS, H2S and SO).Comment: 8 pages, 4 figures, 3 tables, Accepted for publication in Ap

    Tool Capabilities needed for Designing 100 MHz Interconnects

    Get PDF
    Abstract -Printed circuit board design complexity increases greatly as bus speeds exceed 100 MHz. This increased complexity is due more to the large number of simulations a designer must complete rather than simulation or modeling accuracy. This paper presents the case for these increased numbers of simulations, and presents techniques for managing this complexity

    Reorientation of Spin Density Waves in Cr(001) Films induced by Fe(001) Cap Layers

    Full text link
    Proximity effects of 20 \AA thin Fe layers on the spin density waves (SDWs) in epitaxial Cr(001) films are revealed by neutron scattering. Unlike in bulk Cr we observe a SDW with its wave vector Q pointing along only one {100} direction which depends dramatically on the film thickness t_{Cr}. For t_{Cr} < 250 \AA the SDW propagates out-of-plane with the spins in the film plane. For t_{Cr} > 1000 \AA the SDW propagates in the film plane with the spins out-of-plane perpendicular to the in-plane Fe moments. This reorientation transition is explained by frustration effects in the antiferromagnetic interaction between Fe and Cr across the Fe/Cr interface due to steps at the interface.Comment: 4 pages (RevTeX), 3 figures (EPS

    Causal effects of an absent crowd on performances and refereeing decisions during Covid-19

    Get PDF
    The Covid-19 pandemic has induced worldwide natural experiments on the effects of crowds. We exploit one of these experiments that took place over several countries in almost identical settings: professional football matches played behind closed doors within the 2019/20 league seasons. We find large and statistically significant effects on the number of yellow cards issued by referees. Without a crowd, fewer cards were awarded to the away teams, reducing home advantage. These results have implications for the influence of social pressure and crowds on the neutrality of decisions

    Syzygies of torsion bundles and the geometry of the level l modular variety over M_g

    Full text link
    We formulate, and in some cases prove, three statements concerning the purity or, more generally the naturality of the resolution of various rings one can attach to a generic curve of genus g and a torsion point of order l in its Jacobian. These statements can be viewed an analogues of Green's Conjecture and we verify them computationally for bounded genus. We then compute the cohomology class of the corresponding non-vanishing locus in the moduli space R_{g,l} of twisted level l curves of genus g and use this to derive results about the birational geometry of R_{g, l}. For instance, we prove that R_{g,3} is a variety of general type when g>11 and the Kodaira dimension of R_{11,3} is greater than or equal to 19. In the last section we explain probabilistically the unexpected failure of the Prym-Green conjecture in genus 8 and level 2.Comment: 35 pages, appeared in Invent Math. We correct an inaccuracy in the statement of Prop 2.

    A rotating molecular jet from a Perseus protostar

    Full text link
    We present 12^{12}CO(2-1) line and 1.4 mm continuum archival observations, made with the Submillimeter Array, of the outflow HH 797 located in the IC 348 cluster in Perseus. The continuum emission is associated with a circumstellar disk surrounding the class 0 object IC 348-MMS/SMM2, a very young solar analog. The line emission, on the other hand, delineates a collimated outflow, and reveals velocity asymmetries about the flow axis over the entire length of the flow. The amplitude of velocity differences is of order 2 km s−1^{-1} over distances of about 1000 AU, and we interpret them as evidence for jet rotation --although we also discuss alternative possibilities. A comparison with theoretical models suggests that the magnetic field lines threading the protostellar jet might be anchored to the disk of a radius of about 20 AU.Comment: Accepted for publication in Ap

    The new small-angle neutron scattering instrument SANS-1 at MLZ—characterization and first results

    Get PDF
    AbstractA thorough characterization of the key features of the new small-angle neutron scattering instrument SANS-1 at MLZ, a joint project of Technische UniversitĂ€t MĂŒnchen and Helmholtz Zentrum Geesthacht, is presented. Measurements of the neutron beam profile, divergency and flux are given for various positions along the instrument including the sample position, and agree well with Monte Carlo simulations of SANS-1 using the program McStas. Secondly, the polarization option of SANS-1 is characterized for a broad wavelength band. A key feature of SANS-1 is the large accessible Q-range facilitated by the sideways movement of the detector. Particular attention is hence paid to the effects that arise due to large scattering angles on the detector where a standard cos3 solid angle correction is no longer applicable. Finally the performance of the instrument is characterized by a set of standard samples
    • 

    corecore