
Tool Capabilities needed for Designing 100 MHz Interconnects

Tim A. Schreyer

Intel Architecture Labs
Intel Corporation

Hillsboro, OR 97124, USA
Tel: 503-264-8332

FAX: 503-264-6053
e-mail: tim_a_schreyer@ccm.intel.com

Abstract – Printed circuit board design complexity
increases greatly as bus speeds exceed 100 MHz. This increased
complexity is due more to the large number of simulations a
designer must complete rather than simulation or modeling
accuracy. This paper presents the case for these increased
numbers of simulations, and presents techniques for managing
this complexity.

I. INTRODUCTION

Many system buses are now or will soon be operating at
speeds of 100 MHz or greater. In today’s personal computer,
these speeds can already be found on the CPU’s system bus
(for example, 100 MHz is the bus speed of the Pentium® II
Processor) and the graphics bus (the AGP bus operates at 133
MHz). Other buses can be expected to reach these speeds in
the near future.

In order to achieve these speeds some buses are using a
new architecture in which interconnect delays must be
matched to each other. This “matching” means that printed
circuit board designers must consider how manufacturing
tolerances impact the mismatch between interconnect traces.
This greatly increases the number of simulations required, and
therefore the complexity of the design effort.

This paper shows there is a need to develop simulators
capable of managing thousands of simulations, and that these
tools must be able to present the results of these simulations in
a format easily-understandable by designers.

II. INTERCONNECT DESIGN TRENDS

As system buses advance to speeds of 100 MHz and
beyond, we are seeing a shift in timing architecture from a so-
called “common-clock” timing mode to a so-called “source-
synchronous” timing mode. This has a strong impact on the
tools and techniques used to design these systems. In order to
understand this impact it is first necessary to understand the
differences between common-clock and source-synchronous
modes.

A. Common-Clock
Fig. 1 shows an illustration of the common-clock timing

mode. In this operating mode, a universal or “common” clock
is generated elsewhere in the system and is used to launch
data out of the driver and latch it into the receiver. The
maximum operating speed for this type of bus is therefore
limited by the sum of the output, interconnect and input
delays as well as any routing skew between the two
destinations for the clock. In other words, the minimum
period (maximum frequency) of operation for this system is
given by

Period = T + T + T + TDriver Interconnect Receiver Skew (1)

where TDriver is the driver’s output valid delay (typically 5-
10 ns), TInterconnect is the interconnect delay (typically 2-4
ns, depending on loading and fanout), TReceiver is the
receiver’s input setup timing (typically 0-2 ns) and TSkew is
the skew between the clock at the driver and receiver
(typically 0.5-1.0 ns). Using these ranges, we can estimate
that common-clock mode will work well for switching speeds
up to approximately 100 MHz, but another scheme will be
needed as speeds exceed 100 MHz.

Data

Clock Clock

Driver Receiver

Tdriver Tinterconnect Treceiver

Fig. 1. Interconnect delays between a driver and a receiver,
illustrating the common-clock timing mode.

B. Source-Synchronous
As bus speeds increase, it becomes necessary to find a

way to exceed the limit identified in equation (1). This can be
done by generating the clock (more correctly called a “strobe”
in this mode) locally and sending it as a separate signal along
with the data. This is known as source-synchronous timing,
and is illustrated in Fig. 2.

Source-synchronous timing allows the data and strobe
delays to essentially cancel, and the speed of the bus is now
given by

Period = (T + T + T + T
- (T + T + T + T

Driver Interconnect Receiver Skew Data

Driver Interconnect Receiver Skew Strobe

)
)

(2)

Notice, however, that equation (2) indicates that the bus
speed could theoretically approach infinity. This observation
must, of course be false, but can we explain why? The key to
explaining this lies in identifying all possible sources for
mismatch between the data and strobe delays.

A better form, therefore, for equation (2) is

Period = (T) - (T)Data Strobe± ±δ δ (3)

where δ represents all of the uncertainty terms in these delay
paths. These uncertainty factors include manufacturing
tolerances in the printed circuit board, tolerances in the
integrated circuit components, and additional effects caused
by crosstalk and other noise sources. Some of the effects
which must be considered are shown in TABLE I.

Note that in the best case this is limited by ±2δ, so the
designer must assume the worst-case operating speed, that is

Period = 2δ (4)

As a design problem, equation (4) is particularly
interesting because δ represents terms which were previously
called “second-order” effects. In earlier designs these terms
were small enough that they could be ignored, but now they
reflect nearly all of the design challenge.

For example, Fig. 3 shows what can happen if the strobe
and data operate at different switching rates (common,
because the data may easily contain several 1’s or several 0’s
in sequence). Since the strobe’s voltage level has not
stabilized at the beginning of each new cycle, its interconnect
delay is 0.5 nsec less than the data’s interconnect delay. This
additional 0.5 nsec of skew can be critical to 100 MHz
source-synchronous designs.

At a personal level, this means the designer must
become familiar with effects that were previously ignored.

TABLE I
SOME OF THE DESIGN PARAMETERS WHICH MUST BE

CONSIDERED FOR COMMON-CLOCK AND SOURCE-
SYNCHRONOUS DESIGNS

Common Clock Source-Synchronous
• Driver strength
• Receiver capacitance
• Trace length
• Trace impedance and

propagation velocity

• Driver matching
• Receiver load matching
• Trace length matching
• Trace impedance and

velocity matching
• Driver pullup and

pulldown matching
• Trace matching between

even and odd (crosstalk)
modes

• Impact of pulse-width
differences.

Data

Strobe

Driver Receiver

Tdriver Tinterconnect Treceiver

Fig. 2. Interconnect delay picture, including both data and
strobe to illustrate the source-synchronous timing mode.

Simulated Response

0.
5

V
ol

t/d
iv

2 ns/div

skew:
0.56 ns

Fig. 3. Example of source-synchronous skew, showing the
impact pulse width can have on the mismatch between two
identical traces (strobe pulse = 7 ns; data pulse = 50 ns).

III. INTERCONNECT DESIGN METHODOLOGY

A. Design Complexity
To understand this complexity from the designer’s point

of view, we must consider the number of simulations
necessary to guarantee sufficient performance.

To begin, consider the topology shown in Fig. 4. This is
a cache design consisting of a processor, controller and 18
SRAM memory components (based on earlier 50 MHz
designs using the Pentium® processor). The topology shows
how a heavily-loaded common clock bus might be routed, and
is a good example to show the impact of line length.

Fig. 5 shows the response of this system with the
interconnect traces routed symmetrically. All components
receive a well-shaped square wave with approximately 3 nsec
delay, which is quite acceptable at 50 MHz.

Fig. 6 shows the response of the same topology when
routed asymmetrically. In this case, the topology of Fig. 4
was modified so that the controller connects directly to the
bottom row of SRAM’s using a 1 inch trace. This is the type
of routing that might occur if the router (manual or automatic)
is trying to minimize interconnect lengths without knowledge
of the resulting signal integrity. Fig. 6 shows that this
asymmetry can nearly double the interconnect delay and can
seriously degrade signal quality.

These figures show that even for a common-clock design
the designer must consider several options and simulate those
options before routing begins. Even at this level of
complexity it may be necessary to simulate hundreds of cases
to gain the understanding necessary to produce a working
design. These cases must include analysis of the
interconnect’s performance over different line lengths (using
the worst-case lengths expected in the final, routed design),
different buffer impedances and rise/fall times (using the
worst-case values expected due to the driver component’s
normal manufacturing tolerances) and different loading
capacitances (using the worst-case expected due the the
receiver component’s normal manufacturing tolerances).

When a source-synchronous bus is being designed, the
goal is to minimize the difference between the delays of two
interconnect paths. For each case considered, the designer
must compare two simulations in which the input variables
were allowed to vary slightly (within normal tolerances). For
example, when evaluating the impact of buffer strength on
skew, the designer should simulate data and strobe using
slightly different strengths, and then evaluate skew as a
function of the difference between the two drive strengths.

For a source-synchronous design, the number of
required simulations can be in the thousands.

CPU

Controller

SRAM’s

Fig. 4. Example of a heavily-loaded common-clock
interconnect topology (example cache design from earlier 50
MHz systems).

1
V

ol
t/d

iv

5 ns/div

Symmetric response:

Fig. 5. Response of the topology in Fig. 4 when routed
symmetrically. (The waveforms from all 20 components are
overlaid in this plot; the waveform which has a step near
Vcc/2 is the CPU, which is the driver in this example.)

1
V

ol
t/d

iv

5 ns/div

Asymmetric response:

Fig. 6. Response of the topology in Fig. 4 when routed
asymmetrically. (Driven by CPU).

B. Dealing with thousands of simulations
When faced with the prospect of running thousands of

simulations, most sensible designers will look for an easier
way. They will most-likely revert to the design methodology
shown in Fig. 7. In other words, the designer will simply
route the board, and hope the simulator can detect and correct
any problems. As Fig. 7 shows, this approach can be non-
convergent. (The reason for this non-convergence is that it is
usually impossible to fix “bad” traces without impacting
“good” ones. Thus, after fixing several bad traces, the next
round of simulations is likely to identify new “bad” traces).

A more desirable methodology is shown in Fig. 8. If
implemented correctly, this methodology allows a design to
be completed in a single pass, by relying on simulations that
are run before the board traces are routed. The pre-route
simulations are used to define routing “rules”, which are then
used to determine how the printed circuit board is routed,
helping to ensure that all of the interconnects meet their
performance reqirements on the first attempt.

However, this methodology is much more difficult to
implement. It relies on a process called “sensitivity analysis”,
which can require more simulations than the designer can
complete. To be effective, therefore, sensitivity analysis must
be implemented as an automated feature in future simulation
tools.

IV. SENSITIVITY ANALYSIS AS A DESIGN TOOL

At this point we can see that the key to designing
interconnects to operate at speeds in excess of 100 MHz lies
in the ability to generate and analyze large numbers of
simulations.

This section presents three examples of sensitivity
analysis, showing three possible formats which may be used.
These three formats pose two requirements on simulation
tools:

• The tool must be able to run large numbers of
simulations in batch mode, allowing design
variables to be varied automatically.

• The tool must be able to present large amounts of
simulation data in a format a human designer can
understand. This format should be very visual.

The following plots are compiled from several past
design projects. Plotting the data in these formats is not
usually supported directly, and therefore requires the use of
custom programs, usually written by the designers.

A. 3-Dimensional Sensitivity Analysis Plots
One type of sensitivity analysis is shown in Fig. 9. This

type of analysis makes use of a three-dimensional plot,
plotting performance (10% settling time, i.e. the time required
for any oscillations to be damped to less than 10% of the
signal amplitude) as a function of two design variables (driver
strength and line length).

In actual use, it is not important for the designer to
understand (or even to know) the definition of the term being
shown on the vertical axis. It is only necessary to realize that
“big numbers are bad; small numbers are good”. From this
analysis the designer can easily see that the board should be
routed using a length of 4-5 inches for this trace.

Route

Simulate Fix

Fig. 7. Iterative design methodology (frequently non-
convergent)

Route

Sensitivity Analysis

Simulate

Build

Fig. 8. "Single-shot" (ideally) design methodology.

S
et

tli
ng

 T
im

e

Controller Length

D
riv

e
St

re
ng

th
(o

hm
s)0”

5
15

25
35

2 3 4 5 6 7 8 9 10 1112

1

25ns

50

Fig. 9. Example of a 3-dimensional sensitivity analysis plot,
showing the 10% settling time as a function of line length
and driver strength, for the topology of Fig. 4.

B. Solution-Space Plots
Another type of sensitivity analysis, called a solution-

space plot is shown in Fig. 10.

This type of analysis goes beyond the 3-dimensional plot
by acknowledging that there may be several ways of
specifying performance, and that all of these metrics impose
requirements that must be met. A solution-space plot,
therefore, is a way of testing whether the bus meets all of the
required performance metrics, and plotting the results as a
function of any two design variables. The example in Fig. 10
shows the pass/fail test results of the interconnect in question
plotted as a function of driver strength and line length.

In this case the designer can easily see that the board
should be routed using a trace length of 7.5-8.5 inches, and
that components should be chosen which have output
impedances greater than 20Ω .

C. Monte-Carlo Solution-Space Plots
The third type of sensitivity analysis, shown in Fig. 11 is

a monte-carlo solution space plot. This type of plot is similar
to the solution-space plot, except that all of the design
variables have been allowed to vary randomly. After the
simulations have been completed, their results are re-sorted

and plotted against any two of the design variables. Points at
which the interconnect meets all of its performance
requirements are indicated with a white symbol; points at
which the interconnect fails to meet any of its requirements
are indicated with a black symbol.

In use, a designer can view this plot and understand that
the two traces should both be routed within the range of 1.5-
7.5 inches. This technique is similar to the solution-space plot
shown in Fig. 10, but has the added benefit of allowing all
input variables to be varied randomly, helping to ensure better
coverage of the design space.

All of these techniques help the designer understand
simulation results without reviewing gross amounts of raw
simulation data.

V. CONCLUSIONS

In the future, as bus speeds continue to increase beyond
100 MHz, designers will find it necessary to generate
thousands of simulations for a single design.

Future simulation tools must therefore focus on the
ability to handle these large numbers of simulations.
Specifically, these tools must be able to run large numbers of
simulations in batch mode, allowing parameters to be varied
automatically without requiring human intervention, and post-
processing the results into an easily-readable format.

In short, the goal is to create pictures which help the
designer visualize and understand performance trends.

VI. REFERENCES

[1] H. W. Johnson and M. Graham, High Speed Digital Design: A
Handbook of Black Magic, Englewood Cliffs, NJ: Prentice-Hall,
1993.

[2] Intel Corporation, Accelerated Graphics Port (AGP) Platform Design
Guide, published on the worldwide web at http:\\www.agpforum.org,
June 1997.

0 1 2 3 4 5 6 7 8 9 10 11 12
5Ω

15Ω

25Ω

35Ω

Controller Length

D
ri

ve
 S

tr
en

gt
h

“pass”

“fail”

“pass”

Fig. 10. Example of a solution-space plot.

Monte carlo solution space plot

0

2

4

6

8

10

12

0 2 4 6 8 10 12
Trace #2 Length (inches)

Tr
ac

e
#1

 L
en

gt
h

(in
ch

es
)

Fig. 11. Example of a monte-carlo solution-space plot.
Light symbols indicate “pass”; dark symbols indicate “fail”.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

