80 research outputs found

    On linear coupling of acoustic and cyclotron waves in plasma flows

    Full text link
    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are exactly similar to the ones describing coupling of sound waves with internal gravity waves [Rogava & Mahajan: Phys. Rev. E vol.55, 1185 (1997)] in neutral fluid flows. Using another noteworthy quantum mechanical analogy we calculate transformation coefficients and give fully analytic, quantitative description of the coupling efficiency for flows with low shearing rates.Comment: 5 pages, no figures. Submitted to "Physics of Plasmas

    Swirling astrophysical flows - efficient amplifiers of Alfven waves

    Full text link
    We show that a helical shear flow of a magnetized plasma may serve as an efficient amplifier of Alfven waves. We find that even when the flow is purely ejectional (i.e., when no rotation is present) Alfven waves are amplified through the transient, shear-induced, algebraic amplification process. Series of transient amplifications, taking place sequentially along the flow, may result in a cascade amplification of these waves. However, when a flow is swirling or helical (i.e., some rotation is imposed on the plasma motion), Alfven waves become subject to new, much more powerful shear instabilities. In this case, depending on the type of differential rotation, both usual and parametric instabilities may appear. We claim that these phenomena may lead to the generation of large amplitude Alfven waves and the mechanism may account for the appearance of such waves in the solar atmosphere, in accretion-ejecion flows and in accretion columns. These processes may also serve as an important initial (linear and nonmodal) phase in the ultimate subcritical transition to MHD Alfvenic turbulence in various kinds of astrophysical shear flows.Comment: 12 pages, 11 figures, accepted for publication (25-11-02) in Astronomy and Astrophysic

    Amplification of MHD waves in swirling astrophysical flows

    Full text link
    Recently it was found that helical magnetized flows efficiently amplify Alfv\'en waves (Rogava et al. 2003, A&A, v.399, p.421). This robust and manifold nonmodal effect was found to involve regimes of transient algebraic growth (for purely ejectional flows), and exponential instabilities of both usual and parametric nature. However the study was made in the incompressible limit and an important question remained open - whether this amplification is inherent to swirling MHD flows per se and what is the degree of its dependence on the incompressibility condition. In this paper, in order to clear up this important question, we consider full compressible spectrum of MHD modes: Alfv\'en waves (AW), slow magnetosonic waves (SMW) and fast magnetosonic waves (FMW). We find that helical flows inseparably blend these waves with each other and make them unstable, creating the efficient energy transfer from the mean flow to the waves. The possible role of these instabilities for the onset of the MHD turbulence, self-heating of the flow and the overall dynamics of astrophysical flows are discussed.Comment: 8 pages, 9 figures, accepted for publication (18.03.2003) in the "Astronomy and Astrophysics

    On over-reflection and generation of Gravito-Alfven waves in solar-type stars

    Full text link
    The dynamics of linear perturbations is studied in magnetized plasma shear flows with a constant shearing rate and with gravity-induced stratification. The general set of linearized equations is derived and the two-dimensional case is considered in detail. The Boussinesq approximation is used in order to examine relatively small-scale perturbations of low-frequency modes: Gravito-Alfven waves (GAW) and Entropy Mode (EM) perturbations. It is shown that for flows with arbitrary shearing rate there exists a finite time interval of non-adiabatic evolution of the perturbations. The non-adiabatic behavior manifests itself in a twofold way, viz. by the over-reflection of the GAWs and by the generation of GAWs from EM perturbations. It is shown that these phenomena act as efficient transformers of the equilibrium flow energy into the energy of the perturbations for moderate and high shearing rate solar plasma flows. Efficient generation of GAW by EM takes place for shearing rates about an order of magnitude smaller than necessary for development of a shear instability. The latter fact could have important consequences for the problem of angular momentum redistribution within the Sun and solar-type stars.Comment: 20 pages (preprint format), 4 figures; to appear in The Astrophysical Journal (August 1, 2007, v664, N2 issue

    On the efficiency of particle acceleration by rotating magnetospheres in AGN

    Full text link
    To investigate the efficiency of centrifugal acceleration of particles as a possible mechanism for the generation of ultra-high γ\gamma-ray nonthermal emission from TeV blazars, we study the centrifugal acceleration of electrons by rotating magnetic field lines, for an extended range of inclination angles and determine the maximum Lorentz factors γmax\gamma_{max} attainable by the electrons via this process. {Two principal limiting mechanisms for the particle acceleration, inverse Compton scattering and breakdown of the bead-on-the-wire approximation, are examined. Particles may be centrifugally accelerated up to γmax108\gamma_{max} \simeq 10^8 and the main limiting mechanism for the γmax\gamma_{max} is the inverse Compton scattering. The energy of centrifugally accelerated particles can be amply sufficient for the generation (via inverse Compton scattering) of the ultra-high energy (up to 20TeV20TeV) gamma emission in TeV blazars.Comment: 7 pages 5 figure
    corecore