937 research outputs found
Control theory based airfoil design for potential flow and a finite volume discretization
This paper describes the implementation of optimization techniques based on control theory for airfoil design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. The goal of our present work is to develop a method which does not depend on conformal mapping, so that it can be extended to treat three-dimensional problems. Therefore, we have developed a method which can address arbitrary geometric shapes through the use of a finite volume method to discretize the potential flow equation. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented, where both target speed distributions and minimum drag are used as objective functions
Thermal Conductivity, Thermopower, and Figure of Merit of La_{1-x}Sr_xCoO_3
We present a study of the thermal conductivity k and the thermopower S of
single crystals of La_{1-x}Sr_xCoO_3 with 0<= x <= 0.3. For all Sr
concentrations La_{1-x}Sr_xCoO_3 has rather low k values, whereas S strongly
changes as a function of x. We discuss the influence of the temperature- and
the doping-induced spin-state transitions of the Co ions on both, S and k. From
S, k, and the electrical resistivity rho we derive the thermoelectric figure of
merit Z=S^2/(k*rho). For intermediate Sr concentrations we find notably large
values of Z indicating that Co-based materials could be promising candidates
for thermoelectric cooling.Comment: 7 pages, 5 figures included, submitted to Phys. Rev.
Time-Resolved Measurement of a Charge Qubit
We propose a scheme for monitoring coherent quantum dynamics with good
time-resolution and low backaction, which relies on the response of the
considered quantum system to high-frequency ac driving. An approximate
analytical solution of the corresponding quantum master equation reveals that
the phase of an outgoing signal, which can directly be measured in an
experiment with lock-in technique, is proportional to the expectation value of
a particular system observable. This result is corroborated by the numerical
solution of the master equation for a charge qubit realized with a Cooper-pair
box, where we focus on monitoring coherent oscillations.Comment: 4 pages, 3 figure
Monitoring Entanglement Evolution and Collective Quantum Dynamics
We generalize a recently developed scheme for monitoring coherent quantum
dynamics with good time-resolution and low backaction [Reuther et al., Phys.
Rev. Lett. 102, 033602 (2009)] to the case of more complex quantum dynamics of
one or several qubits. The underlying idea is to measure with lock-in
techniques the response of the quantum system to a high-frequency ac field. We
demonstrate that this scheme also allows one to observe quantum dynamics with
many frequency scales, such as that of a qubit undergoing Landau-Zener
transitions. Moreover, we propose how to measure the entanglement between two
qubits as well as the collective dynamics of qubit arrays.Comment: 11 pages, 5 figure
Der Gehalt an freien Aminosäuren in Traubenmosten von gesunden und edelfaulen Beeren verschiedener Rebsorten
Durch Befall mit Botrytis cinerea wird die Konzentration der freien Aminosäuren in Traubenbeeren verringert. In Traubenmasten aus edelfaulem Lesegut ist der Gehalt an freien Aminosäuren gegenüber gesi,indem Lesegut um 33-86% reduziert. Die einzelnen Aminosäuren zeigen hierbei ein unterschiedliches Verhalten: Während z. B. der Anteil des Lysins an der Gesamtaminosäuren-Konzentration bei edelfaulem Material stets höher ist als bei gesundem, verhält sich Isoleucin entgegengesetzt. Isoleucin und Leucin werden vom Pilz ähnlich gut verwertet. Dagegen ist in edelfaulen Beeren im Verhältnis zum Prolin mehr Glutaminsäure und im Bezug auf Leucin mehr Lysin enthalten als in gesunden
Discrete exterior calculus (DEC) for the surface Navier-Stokes equation
We consider a numerical approach for the incompressible surface Navier-Stokes
equation. The approach is based on the covariant form and uses discrete
exterior calculus (DEC) in space and a semi-implicit discretization in time.
The discretization is described in detail and related to finite difference
schemes on staggered grids in flat space for which we demonstrate second order
convergence. We compare computational results with a vorticity-stream function
approach for surfaces with genus 0 and demonstrate the interplay between
topology, geometry and flow properties. Our discretization also allows to
handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure
Physical realization of a quantum spin liquid based on a novel frustration mechanism
Unlike conventional magnets where the magnetic moments are partially or
completely static in the ground state, in a quantum spin liquid they remain in
collective motion down to the lowest temperatures. The importance of this state
is that it is coherent and highly entangled without breaking local symmetries.
Such phenomena is usually sought in simple lattices where antiferromagnetic
interactions and/or anisotropies that favor specific alignments of the magnetic
moments are "frustrated" by lattice geometries incompatible with such order
e.g. triangular structures. Despite an extensive search among such compounds,
experimental realizations remain very few. Here we describe the investigation
of a novel, unexplored magnetic system consisting of strong ferromagnetic and
weaker antiferromagnetic isotropic interactions as realized by the compound
CaCrO. Despite its exotic structure we show both
experimentally and theoretically that it displays all the features expected of
a quantum spin liquid including coherent spin dynamics in the ground state and
the complete absence of static magnetism.Comment: Modified version accepted in Nature Physic
The spin state transition in LaCoO; revising a revision
Using soft x-ray absorption spectroscopy and magnetic circular dichroism at
the Co- edge we reveal that the spin state transition in LaCoO
can be well described by a low-spin ground state and a triply-degenerate
high-spin first excited state. From the temperature dependence of the spectral
lineshapes we find that LaCoO at finite temperatures is an inhomogeneous
mixed-spin-state system. Crucial is that the magnetic circular dichroism signal
in the paramagnetic state carries a large orbital momentum. This directly shows
that the currently accepted low-/intermediate-spin picture is at variance.
Parameters derived from these spectroscopies fully explain existing magnetic
susceptibility, electron spin resonance and inelastic neutron data
- …