400 research outputs found

    Chronology protection in stationary three-dimensional spacetimes

    Full text link
    We study chronology protection in stationary, rotationally symmetric spacetimes in 2+1 dimensional gravity, focusing especially on the case of negative cosmological constant. We show that in such spacetimes closed timelike curves must either exist all the way to the boundary or, alternatively, the matter stress tensor must violate the null energy condition in the bulk. We also show that the matter in the closed timelike curve region gives a negative contribution to the conformal weight from the point of view of the dual conformal field theory. We illustrate these properties in a class of examples involving rotating dust in anti-de Sitter space, and comment on the use of the AdS/CFT correspondence to study chronology protection.Comment: 20 pages. V2: minor corrections, Outlook expanded, references added, published versio

    Warm tachyonic inflation in warped background

    Full text link
    We analyze warm tachyonic inflation, proposed in the literature, but from the viewpoint of four dimensional effective action for tachyon field on a non-BPS D3-brane. We find that consistency with observational data on density perturbation and validity of effective action requires warped compactification. The number of background branes which source the flux is found to be of the order of 10 in contrast to the order of 101410^{14} in the standard cold inflationary scenario.Comment: 9 pages, RevTe

    Low Genetic and Morphometric Intraspecific Divergence in Peripheral Copadichromis Populations (Perciformes: Cichlidae) in the Lake Malawi Basin

    Get PDF
    Peripheral isolated populations may undergo rapid divergence from the main population due to various factors such as a bottleneck or a founder effect followed by genetic drift or local selection pressures. Recent populations of two economically important Copadichromis species in Lake Malombe, a satellite lake of Lake Malawi, were neither genetically nor morphometrically distinct from their source populations in the main lake. Evidence was found for a founder effect which had a different impact on the genetic composition of the two species. In addition, the increased fishing pressure in Lake Malombe may have led to a reduction of the body sizes of both species

    What is needed of a tachyon if it is to be the dark energy?

    Full text link
    We study a dark energy scenario in the presence of a tachyon field ϕ\phi with potential V(ϕ)V(\phi) and a barotropic perfect fluid. The cosmological dynamics crucially depends on the asymptotic behavior of the quantity λ=MpVϕ/V3/2\lambda=-M_pV_\phi/V^{3/2}. If λ\lambda is a constant, which corresponds to an inverse square potential V(ϕ)ϕ2V(\phi) \propto \phi^{-2}, there exists one stable critical point that gives an acceleration of the universe at late times. When λ0\lambda \to 0 asymptotically, we can have a viable dark energy scenario in which the system approaches an ``instantaneous'' critical point that dynamically changes with λ\lambda. If λ|\lambda| approaches infinity asymptotically, the universe does not exhibit an acceleration at late times. In this case, however, we find an interesting possibility that a transient acceleration occurs in a regime where λ|\lambda| is smaller than of order unity.Comment: 11 pages and 3 figures, minor clarifications added; final version to appear in PR

    Simple holographic duals to boundary CFTs

    Full text link
    By relaxing the regularity conditions imposed in arXiv:1107.1722 on half-BPS solutions to six-dimensional Type~4b supergravity, we enlarge the space of solutions to include two new half-BPS configurations, which we refer to as the \kap\ and the \funnel. We give evidence that the \kap\ and \funnel\ can be interpreted as fully back-reacted brane solutions with respectively AdS2AdS_2 and AdS2×S2AdS_2\times S^2 world volumes. \kap\ and \funnel\ solutions with a single asymptotic AdS3×S3AdS_3 \times S^3 region are constructed analytically. We argue that \kap\ solutions provide simple examples of holographic duals to boundary CFTs in two dimensions and present calculations of their holographic boundary entropy to support the BCFT dual picture.Comment: 37 pages, pdflatex, 5 figure

    Quantizing higher-spin gravity in free-field variables

    Get PDF
    We study the formulation of massless higher-spin gravity on AdS3_3 in a gauge in which the fundamental variables satisfy free field Poisson brackets. This gauge choice leaves a small portion of the gauge freedom unfixed, which should be further quotiented out. We show that doing so leads to a bulk version of the Coulomb gas formalism for WNW_N CFT's: the generators of the residual gauge symmetries are the classical limits of screening charges, while the gauge-invariant observables are classical WNW_N charges. Quantization in these variables can be carried out using standard techniques and makes manifest a remnant of the triality symmetry of W[λ]W_\infty[\lambda]. This symmetry can be used to argue that the theory should be supplemented with additional matter content which is precisely that of the Prokushkin-Vasiliev theory. As a further application, we use our formulation to quantize a class of conical surplus solutions and confirm the conjecture that these are dual to specific degenerate WNW_N primaries, to all orders in the large central charge expansion.Comment: 31 pages + appendices. V2: typos corrected, reference adde

    Vanishing Cosmological Constant in Modified Gauss-Bonnet Gravity with Conformal Anomaly

    Get PDF
    We consider dark energy cosmology in a de Sitter universe filled with quantum conformal matter. Our model represents a Gauss-Bonnet model of gravity with contributions from quantum effects. To the General Relativity action an arbitrary function of the GB invariant, f(G), is added, and taking into account quantum effects from matter the cosmological constant is studied. For the considered model the conditions for a vanishing cosmological constant are considered. Creation of a de Sitter universe by quantum effects in a GB modified gravity is discussed.Comment: 8 pages latex, 1 figure. To appear in Int. J. Mod. Phys.

    Dilaton transformation under abelian and non-abelian T-duality in the path integral approach

    Get PDF
    We present a convenient method for deriving the transformation of the dilaton under T-duality in the path-integral approach. Subtleties arising in performing the integral over the gauge fields are carefully analysed using Pauli-Villars regularization, thereby clarifying existing ambiguities in the literature. The formalism can not only be applied to the abelian case, but, and this for the first time, to the non-abelian case as well. Furthermore, by choosing a particular gauge, we directly obtain the target-space covariant expression for the dual geometry in the abelian case. Finally it is shown that the conditions for gauging non-abelian isometries are weaker than those generally found in the literature.Comment: latex, 20 pages, no figure

    Superconformal Quantum Mechanics of Small Black Holes

    Full text link
    Recently, Gaiotto, Strominger and Yin have proposed a holographic dual description for the near-horizon physics of certain N=2 black holes in terms of the superconformal quantum mechanics on D0-branes in the attractor geometry. We provide further evidence for their proposal by applying it to the case of `small' black holes which have vanishing horizon area in the leading supergravity approximation. We consider 2-charge black holes in type IIA on T2×MT^2 \times M, where MM can be either K3K_3 or T4T^4, made up out of D0-branes and D4-branes wrapping MM. We construct the corresponding superconformal quantum mechanics and show that the asymptotic growth of chiral primaries exactly matches with the known entropy of these black holes. The state-counting problem reduces to counting lowest Landau levels on T2T^2 and Dolbeault cohomology classes on MM.Comment: Latex, 16 pages; v2: minor corrections, references added, published versio
    corecore