25,585 research outputs found

    Spin-orbit coupling and spectral function of interacting electrons in carbon nanotubes

    Get PDF
    The electronic spin-orbit coupling in carbon nanotubes is strongly enhanced by the curvature of the tube surface and has important effects on the single-particle spectrum. Here, we include the full spin-orbit interaction in the formulation of the effective low-energy theory for interacting electrons in metallic single-wall carbon nanotubes and study its consequences. The resulting theory is a four-channel Luttinger liquid, where spin and charge modes are mixed. We show that the analytic structure of the spectral function is strongly affected by this mixing, which can provide an experimental signature of the spin-orbit interaction.Comment: 4+epsilon pages, 1 figure; published versio

    Perturbative test of single parameter scaling for 1D random media

    Full text link
    Products of random matrices associated to one-dimensional random media satisfy a central limit theorem assuring convergence to a gaussian centered at the Lyapunov exponent. The hypothesis of single parameter scaling states that its variance is equal to the Lyapunov exponent. We settle discussions about its validity for a wide class of models by proving that, away from anomalies, single parameter scaling holds to lowest order perturbation theory in the disorder strength. However, it is generically violated at higher order. This is explicitely exhibited for the Anderson model.Comment: minor corrections to previous version, to appear in Annales H. Poincar

    Elastic and plastic effects on heterogeneous nucleation and nanowire formation

    Full text link
    We investigate theoretically the effects of elastic and plastic deformations on heterogeneous nucleation and nanowire formation. In the first case, the influence of the confinement of the critical nucleus between two parallel misfitting substrates is investigated using scaling arguments. We present phase diagrams giving the nature of the nucleation regime as a function of the driving force and the degree of confinement. We complement this analytical study by amplitude equations simulations. In the second case, the influence of a screw dislocation inside a nanowire on the development of the morphological surface stability of the wire, related to the Rayleigh-Plateau instability, is examined. Here the screw dislocation provokes a torsion of the wire known as Eshelby twist. Numerical calculations using the finite element method and the amplitude equations are performed to support analytical investigations. It is shown that the screw dislocation promotes the Rayleigh-Plateau instability.Comment: 16 page

    Systematic search for high-energy gamma-ray emission from bow shocks of runaway stars

    Full text link
    Context. It has been suggested that the bow shocks of runaway stars are sources of high-energy gamma rays (E > 100 MeV). Theoretical models predicting high-energy gamma-ray emission from these sources were followed by the first detection of non-thermal radio emission from the bow shock of BD+43^\deg 3654 and non-thermal X-ray emission from the bow shock of AE Aurigae. Aims. We perform the first systematic search for MeV and GeV emission from 27 bow shocks of runaway stars using data collected by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope (Fermi). Methods. We analysed 57 months of Fermi-LAT data at the positions of 27 bow shocks of runaway stars extracted from the Extensive stellar BOw Shock Survey catalogue (E-BOSS). A likelihood analysis was performed to search for gamma-ray emission that is not compatible with diffuse background or emission from neighbouring sources and that could be associated with the bow shocks. Results. None of the bow shock candidates is detected significantly in the Fermi-LAT energy range. We therefore present upper limits on the high-energy emission in the energy range from 100 MeV to 300 GeV for 27 bow shocks of runaway stars in four energy bands. For the three cases where models of the high-energy emission are published we compare our upper limits to the modelled spectra. Our limits exclude the model predictions for Zeta Ophiuchi by a factor ≈\approx 5.Comment: 5 pages, 5 figures, 1 table, accepted by A&

    Dynamical Ne K Edge and Line Variations in the X-Ray Spectrum of the Ultra-compact Binary 4U 0614+091

    Get PDF
    We observed the ultra-compact binary candidate 4U 0614+091 for a total of 200 ksec with the high-energy transmission gratings onboard the \chandra X-ray Observatory. The source is found at various intensity levels with spectral variations present. X-ray luminosities vary between 2.0×1036\times10^{36} \ergsec and 3.5×1036\times10^{36} \ergsec. Continuum variations are present at all times and spectra can be well fit with a powerlaw component, a high kT blackbody component, and a broad line component near oxygen. The spectra require adjustments to the Ne K edge and in some occasions also to the Mg K edge. The Ne K edge appears variable in terms of optical depths and morphology. The edge reveals average blue- and red-shifted values implying Doppler velocities of the order of 3500 \kms. The data show that Ne K exhibits excess column densities of up to several 1018^{18} cm−2^{-2}. The variability proves that the excess is intrinsic to the source. The correponding disk velocities also imply an outer disk radius of the order of <109< 10^9 cm consistent with an ultra-compact binary nature. We also detect a prominent soft emission line complex near the \oviii Lα\alpha position which appears extremely broad and relativistic effects from near the innermost disk have to be included. Gravitationally broadened line fits also provide nearly edge-on angles of inclination between 86 and 89∘^{\circ}. The emissions appear consistent with an ionized disk with ionization parameters of the order of 104^4 at radii of a few 107^7 cm. The line wavelengths with respect to \oviiia\ are found variably blue-shifted indicating more complex inner disk dynamics.Comment: 24 pages, 8 figures, submitted to the Astrophyscial Main Journa

    Weak disorder expansion for localization lengths of quasi-1D systems

    Get PDF
    A perturbative formula for the lowest Lyapunov exponent of an Anderson model on a strip is presented. It is expressed in terms of an energy-dependent doubly stochastic matrix, the size of which is proportional to the strip width. This matrix and the resulting perturbative expression for the Lyapunov exponent are evaluated numerically. Dependence on energy, strip width and disorder strength are thoroughly compared with the results obtained by the standard transfer matrix method. Good agreement is found for all energies in the band of the free operator and this even for quite large values of the disorder strength

    Spacecraft utensil/hand cleansing fixture

    Get PDF
    A system concept for an inflight utensil/hand cleansing fixture is described which includes the following features: (1) capability for efficient cleansing and rinsing of utensils or hands, and (2) provision for general waste fluid disposal. The design concept provides for the capability of functioning for a 30 day shuttle mission containing seven occupants/users. The long range goal is to provide a functioning system capable of operating for missions of at least 120 days. The fixture is a self-contained unit that can be installed in the standard water interface requirements. Service to the unit is a single source of unheated potable water and water is discharged from the unit into a single return waste connection. In addition, the design includes provisions for the intake and discharge of purge air and the discharge of evolved gases. Both the air and the gases are filtered or processed in the assembly before releasing them into the habitability area
    • …
    corecore