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Weak disorder expansion for localization lengths of quasi-1D systems

Rudolf A. Römer
Department of Physics and Centre for Scientific Computing,
University of Warwick, Coventry CV4 7AL, United Kingdom

Hermann Schulz-Baldes
Institut für Mathematik, Strasse des 17. Juni 136,

Technische Universität Berlin, 10623 Berlin, Germany

A perturbative formula for the lowest Lyapunov exponent of an Anderson model on a strip is
presented. It is expressed in terms of an energy dependent doubly stochastic matrix, the size of
which is proportional to the strip width. This matrix and the resulting perturbative expression for
the Lyapunov exponent are evaluated numerically. Dependence on energy, strip width and disorder
strength are thoroughly compared with the results obtained by the standard transfer matrix method.
Good agreement is found for all energies in the band of the free operator and this even for quite
large values of the disorder strength.

PACS numbers: 72.15.Rn, 73.20.Fz, 73.23.-b

The Anderson model describes the generic behavior of
the motion of an electron in a disordered solid. In the
one-dimensional (1D) situation, rigorous proofs of strong
localization have been given [1]. Moreover, the local-
ization length has been calculated [2, 3] for weak disor-
der and its inverse, the Lyapunov exponent, is given by
γ ≈ w2/(96 sin2 k) = w2/(96− 24 E2), where E = 2 cos k
is an energy in the Bloch band of the unperturbed op-
erator (away from band center and edges) and w is the
disorder strength in the normalization discussed below.
For the 2D case, scaling theory [4] predicts also strong
localization with an disorder dependence of the localiza-
tion length of the form exp(1/w2). This was confirmed
by high-precision numerical studies based on the transfer-
matrix method (TMM) [5, 6]. In 3D, a transition to the
so-called weak localization regime with diffusive motion
is expected for low disorder strength and energies in the
band of the free operator. A rigorous proof of strong
localization in 2D and 3D exits only for the band edges
and at high disorder [7, 8] and, in particular, not for en-
ergies in the band and small disorder in the 2D situation.
No rigorous breakthrough results are known for the weak
localization regime.

In order to approach the higher dimensional cases, a
detailed understanding of the quasi-1D situation, i.e. an
infinite wire with many channels, is of crucial importance.
The TMM [5, 6] is here a very reliable tool for a numer-
ical study of the inverse localization length, namely the
smallest Lyapunov exponent. Thouless argued that it is
proportional to w2/L where L is the number of channels
[9]. The Dorokhov-Mello-Pereyra-Kumar theory gives a
microscopic derivation of this behavior (see [10] for a re-
view), but is not based on a calculation starting directly
from an original model and hence does not allow to study
finer properties such as the energy dependence of the lo-
calization length. A perturbative analytical calculation
of the smallest Lyapunov exponent of an Anderson model
on a strip was recently given by one of the authors [11].
The techniques of that work also allow to deal with other

models having symplectic transfer matrices.
In this letter, we first recall the perturbative formula

from [11] and then compare it numerically with the
TMM. Our main result is that the perturbative formula
works remarkably well for all but a discrete set of energies
and, quite surprisingly, relatively large values of the dis-
order strength. This allows to understand the rich struc-
ture of the energy dependence of the smallest Lyapunov
exponent. We also study various quantities associated to
the random dynamical system underlying the TMM.

Let us begin by recalling that the Anderson Hamilto-
nian on an infinite strip of finite width L is given by

H = −
∑

〈x,y〉
|x〉〈y|+ w

∑
x

v(x)|x〉〈x| , (1)

with tight-binding states |x〉 at x = (n,m) where n ∈ Z
and m = 1, . . . , L. The hopping is between nearest neigh-
bors 〈x,y〉 only and with periodic boundary conditions
in the m-direction. The v(x) ∈ [− 1

2 , 1
2 ] are independent

and identically distributed random variables with (for
sake of concreteness [12]) uniform distribution so that
E

[
v(x)2

]
= 1

12 . For simplicity, let us also choose L even.
The Schrödinger equation HΨ = EΨ is rewritten in a
recursive form using the 2L× 2L transfer matrices

T(n) =
(

∆L + wV(n)− E1 −1
1 0

)
, (2)

where ∆L is the discrete Laplacian in the transverse di-
rection with periodic boundary conditions and V(n) =
diag(v(n, 1), . . . , v(n,L)). The transfer matrix is sym-

plectic, namely, T(n)tJT(n) = J =
(

0 −1
1 0

)
. Asso-

ciated with this family of random matrices are the Lya-
punov exponents γ1 ≥ . . . ≥ γL ≥ 0 defined via

p∑
q=1

γq = lim
N→∞

1
N

log

(∥∥∥∥∥
N∏

n=1

ΛpT(n)

∥∥∥∥∥

)
, (3)



2

for p = 1, . . . , L, where Λp denotes the p-fold exterior
product. They are self-averaging quantities so that an
average over the disorder configurations may be taken
before the large N limit [13].

The first aim is to bring the transfer matrix at w = 0 to
its symplectic normal form. Let µl = −2 cos (2πl/L)−E,
l = 0, . . . , L − 1, denote the eigenvalues of ∆L − E.
Clearly, µl = µL−l so that all eigenvalues µl except for
l = 0, L/2 are doubly degenerate. If |µl| < 2, we call
it an elliptic eigenvalue and define its rotation phase ηl

by µl = eıηl + e−ıηl . If on the other hand, |µl| > 2,
we call it hyperbolic and define its dilation exponent ηl

by µl = eηl + e−ηl . There are L
2 − 1 energies E within

the band [−4, 4] of the free strip Laplacian for which the
parabolic case |µl| = 2 occurs. These energies corre-
sponding to interior band edges are for now excluded,
but will be further discussed below. Using the corre-
sponding eigenvectors of ∆L it is possible to construct a
symplectic matrix M such that

M−1T(n)M = R [1 + wP(n)] . (4)

The symplectic matrix R is built from elliptic and hyper-
bolic rotation matrices Re(η), Rh(η), respectively given
by

(
cos η − sin η
sin η cos η

)
,

(
cosh η sinh η
sinh η cosh η

)
. (5)

More precisely, the 4 entries of R at (l, l), (l, L + l),
(l + L, l) and (l + L, l + L) form the matrices Re(ηl),
Rh(ηl) depending on whether µl is elliptic or hyper-
bolic. All other entries of R vanish. The matrix P(n) =

M−1

(
0 0

V(n) 0

)
M is nilpotent and in the Lie algebra

of the symplectic group.
These free modes naturally group themselves into

channels which are the even-dimensional subspaces of
R2L rotating under R with the same frequency. In our
situation, there are L/2 + 1 such channels indexed by
l = 0, . . . , L/2. The lth channel is given by the compo-
nents l, L − l, L + l, 2L − l of R2L and we denote the
corresponding projection by πl. The channels l = 0, L/2
are simple, while all others are doubly degenerate.

Let us introduce a symplectic frame u = (u1, . . . , uL)
to be a set of orthonormal vectors in R2L satisfying skew-
orthogonality 〈up|J|uq〉 = 0 for all p, q = 1, . . . , L. Given
an initial symplectic frame u(0), new frames u(n) are
constructed iteratively as follows: apply R [1 + wP(n)]
to each vector of u(n−1) and then use Gram-Schmidt or-
thonormalization procedure in order to obtain u(n). This
gives a random dynamical system on the space of sym-
plectic frames (which is isomorphic to the L-dimensional
unitary group). The advantage of the basis change (4)
is that the discrete-time dynamics of frames at w = 0 is
simply given by rotations. A weak random potential per-
turbs this simple dynamics in an analytically controllable
way.

Important in our perturbative formula will be the
weight ρp,k(n) = 〈up(n)|πk|up(n)〉 of the pth frame vector
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FIG. 1: Lyapunov exponent γL as function of disorder
strength for energy E = 1.1 and strip widths L = 20, 50, 100.
Lines have been computed from (7) with 0.05% error, symbols
denote results of TMM calculations (with 0.5% error if there
is no error bar). Error bars are drawn on one side only.

in the kth channel at iteration n, as well as its Birkhoff
mean

〈ρp,k〉 = lim
N→∞

1
N

N−1∑
n=0

ρp,k(n) . (6)

Each matrix ρp,k(n) is doubly stochastic, namely, the
sum over the channel index k = 0, . . . , L/2 equals 1 while
the sum over the frame vector index p = 1, . . . , L is equal
to the degeneracy of the kth channel. The latter fact
is related to the symplectic structure of the frame and
[πl,J] = 0. In a similar fashion, one can define other
Birkhoff averages such as 〈ρL,lρL,k〉.

The rigorous perturbative formula for the smallest
Lyapunov exponent within the band is then, under a
hypothesis on the incommensurability of the rotation
phases which excludes energies with Kappus-Wegner-
type anomalies [14] and interior band edges, given by

γL =
w2

96 L

∑

l,k

2− δl,k

sin ηl sin ηk
〈ρL,l ρL,k〉 + O(w4) , (7)

where the sum runs over elliptic channels only (actually,
for hyperbolic channels k, ρL,k(n) almost vanishes for n
large enough as will be discussed below). For a single
channel, this expression reduces to the perturbative 1D
result given above if one sets ∆1 = 0 in (2) and then
µ0 = E so that η0 = k. We emphasize that only the av-
eraged channel weights of the last frame vector uL enter
expression (7). We also remark that the dependence of
the error term on L and E remains unspecified.

For a numerical study of (7), one first evaluates the
Birkhoff averages 〈ρL,lρL,k〉 as in (6) by generating ran-
dom transfer matrices just as in the TMM [15]. Report-
ing this into (7) and neglecting the O(w4) term gives the
perturbative values plotted in Fig. 1 (as well as Fig. 2
and 3 below). This was done for a typical energy E = 1.1
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FIG. 2: Lyapunov exponent γL as function of energy for disor-
der w = 0.2, 0.5, 1.0 and strip width L = 20. Solid lines have
been computed from (7) with 0.05% error, symbols denote re-
sults of TMM calculations with 0.5% error. For w = 0.5 the
dashed solid line was calculated from Eq. (8) and for w = 0.2
from Eq. (9).
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FIG. 3: Log-log plot of the reduced localization length 1/LγL

as function of inverse strip width 1/L for energy E = 1.1 and
disorders w = 0.2 (¦), w = 0.5 (¤), and w = 1.0 (◦). Full
symbols denote results of TMM calculations with 0.5% error,
open symbols have been computed using (7) with 0.05% error.
The lines serve as guide to the eye.

away from internal band edges such that |µl| 6= 2 for all
l. For comparison, we also plot the value of γL as evalu-
ated by the standard TMM. Very good agreement is ob-
tained even for rather large values of w. For very small
w, the numerical convergence of the TMM estimates for
γL is computationally intensive whereas the convergence
of the average channel weights needs about a factor 103

less iterations. More stable results can hence be obtained
at a fraction of the computational cost. For L = 20 and
E = 1.1, the validity of the perturbative formula breaks
down at about w ≈ 3.0, for large L a bit earlier. The
breakdown happens in the region of crossover from quasi-
1D to 2D behavior, i.e. LγL ≈ 1.
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FIG. 4: A sample of numerical results for the average channel
weights 〈ρp,k〉 as function of the channel number k for various
frame vectors (index p). The strip width is L = 50, energy
E = 1.1 and disorder w = 0.5. Hyperbolic frame vectors with
p ≤ 17 have a large 〈ρp,k〉 ∼ 1 for a specific k, whereas elliptic
frame vectors p ≥ 18 all have nearly a uniform distribution on
elliptic channel indices 9 ≤ k ≤ 25. The lines serve as guide
to the eye.

Fig. 2 shows the energy dependence of γL and its per-
turbative approximation (7). The oscillatory behavior is
very well reproduced by the internal band edges corre-
sponding to some eigenmode of ∆L, that is the peaks
lie precisely on energies E where |µl| = 2 for some l so
that sin ηl = 0. As the validity of (7) in their vicinity is
restricted, the singularities of the perturbative approxi-
mation are artificial. In fact, one has to adapt the anal-
ysis of [16] using the normal form of [17] to this higher
dimensional case. This will be done elsewhere.

Fig. 3 shows the strip width dependence of the reduced
localization length in a plot usually used to infer the
universal 2D scaling function. The scaling hypothesis
[4, 18] states that there is a unique scaling function F
such that one can find a function ξ(w), also called the
2D localization length, so that all the data γL(w) satis-
fies log

(
1

LγL(w)

)
= F

[
log

(
ξ(w)

L

)]
. Hence Fig. 3 allows

to read off a part of F which is usually difficult to de-
termine numerically because the TMM converges badly
for very small w. Note that all the data of Fig. 3 lie well
inside the quasi-1D regime where LγL ¿ 1.

We now analyze further quantities of the TMM random
dynamical system. Fig. 4 shows typical numerical results
on the average channel weights. The first frame vectors
align with the hyperbolic channels. More precisely, they
fill them one after another in order of decreasing dilation
exponents. Thus u1 completely aligns with the expand-
ing direction of the most hyperbolic channel correspond-
ing to the fundamental of ∆L. Vectors p = 10, 11 fill the
doubly degenerate sixth channel. Due to symplectic and
orthogonal blocking, the remaining frame vectors have
to be in the elliptic channels. In fact, they have a more
or less uniform distribution over the elliptic channels (in
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FIG. 5: Contour plot of the numerically evaluated correla-
tion function 〈ρL,lρL,k〉−〈ρL,l〉〈ρL,k〉 of the Lth frame vector
plotted as function of channel indices l, k for energy E = 1.1,
disorder w = 0.25, and strip width L = 50. The correlation
for hyperbolic channel numbers l, k ≤ 8 is zero.

particular, also the last one p = 50), only the first elliptic
frame vectors p = 18, 19 give more weight to channels
close to the internal band edges. Moreover, further nu-
merics show that all these distributions are nearly inde-
pendent of the disorder strength for w sufficiently small
enough. Indeed, one can set up a BGGKY-type hierarchy
for these distributions [11]. The fact that the distribution
over the elliptic channels is nearly uniform is a result of
the mixing properties of the random potential, because
the free dynamics R gives no preference to any of the el-
liptic channels. Fig. 5 shows that the correlations in the

calculation of Birkhoff averaged channel weights are very
small. Hence, as further approximation, one may factor
the stochastic matrix in (7).

Resuming, the numerical results imply that the dis-
tribution of the last frame vector is uniform on the el-
liptic channels, the correlations are weak and all this is
uniformly for small w. Hence a good approximation for
the coefficient in (7) should be obtained upon replacing
〈ρL,l ρL,k〉 by (Le)−2 if Le is the number of elliptic chan-
nels. This gives

γL ≈ w2

96 L

1
L2

e

∑

l,k

2− δl,k

sin ηl sin ηk
, (8)

where the sum still runs over elliptic channels only. This
fits well with the results of Fig. 1 and gives a good ap-
proximation as shown in Fig. 2 for w = 0.5, albeit not as
good as Eq. (7). For large L, one may furthermore ne-
glect the δl,k in (8) and approximate the discrete sum by
a Riemann integral. Hence, we infer for E > 0 and large
L (but not too large so that E stays away from internal
band edges)

γL ≈ w2

12L

(∫

ηE≤η≤π

dη

π − ηE

1√
4− (2 cos η + E)2

)2

,

(9)
where we set ηE = arccos(1 − E/2). Indeed this elliptic
integral (of first kind) can be evaluated numerically. Of
course, this does not give the rich oscillatory structure
for finite L anymore as demonstrated in Fig. 2 for the
case w = 0.2.
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[7] J. Fröhlich, T. Spencer, Commun. Math. Phys. 88, 151
(1983).

[8] M. Aizenman, S. Molchanov, Commun. Math. Phys. 157,
245-278 (1993).

[9] D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).
[10] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[11] H. Schulz-Baldes, Perturbation theory for Lyapunov ex-

ponents of an Anderson model on a strip, mp arc/03-369,
submitted to GAFA, May 2003.

[12] In [11], the distribution of the v(x)’s is merely supposed
to be centered and of unit variance. The present normal-
ization of the disorder strength is the standard choice in
the physics literature.

[13] P. Bougerol, J. Lacroix, Products of Random Matri-
ces with Applications to Schrödinger Operators, (Birk-
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