7,176 research outputs found

    Interpretation of surface features of Europa obtained from occultations by Io

    Get PDF
    Light curves of occultations of Europa by Io were used to generate a crude map of albedo features on Europa. Impact parameters and magnitude ratios for each event were imposed on a model. Residuals between the observed and computed light curves were interpreted as albedo features on Europa. In order to improve the fit between the observations and the model a general polar brightening was employed. The effects of additional albedo features and alternate models are discussed

    A Program of Photometric Measurements of Solar Irradiance Fluctuations from Ground-based Observations

    Get PDF
    Photometric observations of the sun have been carried out at the San Fernando Observatory since early 1985. Since 1986, observations have been obtained at two wavelengths in order to separately measure the contributions of sunspots and bright facular to solar irradiance variations. Researchers believe that the contributions of sunspots can be measured to an accuracy of about plus or minus 30 ppm. The effect of faculae is much less certain, with uncertainties in the range of plus or minus 300 ppm. The larger uncertainty for faculae reflects both the greater difficulty in measuring the facular area, due to their lower contrast compared to sunspots, and the greater uncertainty in their contrast variation with viewing angle on the solar disk. Recent results from two separate photometric telescopes will be compared with bolometric observations from the active cavity radiometer irradiance monitor (ACRIM) that was on board the Solar Max satellite

    Mol. Cell. Proteomics

    Get PDF
    Chemical cross-linking in combination with mass spectrometric analysis offers the potential to obtain low-resolution structural information from proteins and protein complexes. Identification of peptides connected by a cross-link provides direct evidence for the physical interaction of amino acid side chains, information that can be used for computational modeling purposes. Despite impressive advances that were made in recent years, the number of experimentally observed cross-links still falls below the number of possible contacts of cross-linkable side chains within the span of the cross-linker. Here, we propose two complementary experimental strategies to expand cross-linking data sets. First, enrichment of cross-linked peptides by size exclusion chromatography selects cross-linked peptides based on their higher molecular mass, thereby depleting the majority of unmodified peptides present in proteolytic digests of cross-linked samples. Second, we demonstrate that the use of proteases in addition to trypsin, such as Asp-N, can additionally boost the number of observable cross-linking sites. The benefits of both SEC enrichment and multiprotease digests are demonstrated on a set of model proteins and the improved workflow is applied to the characterization of the 20S proteasome from rabbit and Schizosaccharomyces pombe

    Can We Study Titin Properties in Passive Myofibrils?

    Get PDF
    Titin is a giant molecular spring in skeletal and cardiac muscles. It has a variety of important passive, structural, sensing and force-regulatory functions, and thus has been investigated widely (Granzier & Labeit, 2007). Studying the mechanical properties of isolated titin has been difficult because of the enormous size and great instability of this protein. However, the passive properties in single myofibrils are almost exclusively explained by titin, and thus we asked the question if we can study titin properties in intact, passive myofibrils (Bartoo et al., 1997). Single myofibrils were isolated in a standard way (Leonard & Herzog, 2010) and three consecutive stretches of 1.0-3.5μm/sarcomere magnitude were performed at a nominal stretch speed of 0.1 sarcomere length/sarcomere/s. Sarcomere length were measured using a high resolution photo diode array and forces were measured using micro-electronically machined silicon nitrate levers. Single myofibrils frequently showed a distinct change in stiffness upon stretch at sarcomere length of approximately 3.6-3.8μm, they showed a decrease in loading energy with repeat stretch cycles and their efficiency decreased for all loading cycles with increasing stretch magnitude. These properties are in agreement with results observed in single titin preparations (Kellermayer et al., 1997). Therefore, we conclude that titin properties can be studied using single myofibrils. This has at least two significant advantages over tests with isolated titin proteins: (i) testing is technically much easier and (ii) titin is arranged in its intact structural arrangement. In the future, we would like to study titin properties in calcium activated myofibrils in which active (actin-myosin based cross-bridges forces) are eliminated either by chemical inhibition or by deletion of regulatory proteins on actin, as we have done before (Joumaa et al., 2008)

    Cosmogenic nuclides in cometary materials: Implications for rate of mass loss and exposure history

    Get PDF
    As planned, the Rosetta mission will return to earth with a 10-kg core and a 1-kg surface sample from a comet. The selection of a comet with low current activity will maximize the chance of obtaining material altered as little as possible. Current temperature and level of activity, however, may not reliably indicate previous values. Fortunately, from measurements of the cosmogenic nuclide contents of cometary material, one may estimate a rate of mass loss in the past and perhaps learn something about the exposure history of the comet. Perhaps the simplest way to estimate the rate of mass loss is to compare the total inventories of several long-lived cosmogenic radionuclides with the values expected on the basis of model calculations. Although model calculations have become steadily more reliable, application to bodies with the composition of comets will require some extension beyond the normal range of use. In particular, the influence of light elements on the secondary particle cascade will need study, in part through laboratory irradiations of volatile-rich materials. In the analysis of cometary data, it would be valuable to test calculations against measurements of short-lived isotopes

    Danger, Mystery, and Environmental Preference

    Get PDF
    The possibility of a connection among high mystery, perceived danger, and depressed preference for certain categories of environments was investigated. Past research had suggested that urban alleys and narrow canyons would exhibit such a pattern. Comparison categories, chosen to be high in mystery and low in perceived danger, were urban and non-urban nature (that is, field-and-forest settings within urban or non-urban environments), respectively. Preference ratings were obtained for settings from each of the four categories. The settings were also rated by independent raters for six predictor variables: mystery, physical danger, social danger, shadow, nature, and vertical depth. The major findings were that danger was a negative predictor of preference and mystery was a positive predictor. There was no evidence that high mystery was involved in depressed preference ratings for any of the environmental categories investigated. The distinction between physical and social danger proved useful, with only social danger related (negatively) to preference

    Infrared-Faint Radio Sources are at high redshifts

    Get PDF
    Context: Infrared-Faint Radio Sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for High-redshift Radio Galaxies (HzRGs), suggesting a link between the two classes of object. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Further, we test the hypothesis that IFRS are similar to HzRGs, as higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts as well as the resulting luminosities show IFRS to be similar to HzRGs. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of Active Galactic Nuclei in the early universe and adds to the problems of explaining the formation of supermassive black holes shortly after the Big Bang.Comment: 7 pages, 4 figures; version in prin

    Minimum-error discrimination between subsets of linearly dependent quantum states

    Get PDF
    A measurement strategy is developed for a new kind of hypothesis testing. It assigns, with minimum probability of error, the state of a quantum system to one or the other of two complementary subsets of a set of N given non-orthogonal quantum states occurring with given a priori probabilities. A general analytical solution is obtained for N states that are restricted to a two-dimensional subspace of the Hilbert space of the system. The result for the special case of three arbitrary but linearly dependent states is applied to a variety of sets of three states that are symmetric and equally probable. It is found that, in this case, the minimum error probability for distinguishing one of the states from the other two is only about half as large as the minimum error probability for distinguishing all three states individually.Comment: Representation improved and generalized, references added. Accepted as a Rapid Communication in Phys. Rev.

    Brane Tilings and Exceptional Collections

    Full text link
    Both brane tilings and exceptional collections are useful tools for describing the low energy gauge theory on a stack of D3-branes probing a Calabi-Yau singularity. We provide a dictionary that translates between these two heretofore unconnected languages. Given a brane tiling, we compute an exceptional collection of line bundles associated to the base of the non-compact Calabi-Yau threefold. Given an exceptional collection, we derive the periodic quiver of the gauge theory which is the graph theoretic dual of the brane tiling. Our results give new insight to the construction of quiver theories and their relation to geometry.Comment: 46 pages, 37 figures, JHEP3; v2: reference added, figure 13 correcte

    N=1 gauge superpotentials from supergravity

    Full text link
    We review the supergravity derivation of some non-perturbatively generated effective superpotentials for N=1 gauge theories. Specifically, we derive the Veneziano-Yankielowicz superpotential for pure N=1 Super Yang-Mills theory from the warped deformed conifold solution, and the Affleck-Dine-Seiberg superpotential for N=1 SQCD from a solution describing fractional D3-branes on a C^3 / Z_2 x Z_2 orbifold.Comment: LaTeX, iopart class, 8 pages, 3 figures. Contribution to the proceedings of the workshop of the RTN Network "The quantum structure of space-time and the geometric nature of fundamental interactions", Copenhagen, September 2003; v2: published version with minor clarification
    corecore