2 research outputs found

    Anadromy in brown trout (Salmo trutta): A review of the relative roles of genes and environmental factors and the implications for management and conservation

    Get PDF
    While many brown trout (Salmo trutta) populations spend their entire life cycle in freshwater, especially as river-lake migrants or river residents, others show facultative anadromy. That is, some trout migrate to sea while other individuals of the same population remain within their natal river. Sea trout can give rise to resident offspring and vice versa, although there is a strong tendency to track the parental life history. Anadromy delivers better feeding and thus larger size, which results in higher fecundity in females, enhanced mate choice, and other reproductive benefits. River residence, more prevalent in males as anadromy conveys fewer benefits, can give higher survival and avoids the energy expenditure required by anadromy. Overall, the costs and benefits of anadromy versus residency, measured in terms of survival and reproduction, are finely balanced and small changes to the cost-benefit equation can lead to evolutionary changes in life history. The decision to be anadromous or resident is a quantitative threshold trait, controlled by multiple genes and environmental factors. The dichotomous nature of the trait is postulated to be the result of the environmentally influenced physiological condition (e.g. energy status) relative to a genetically determined threshold. Anadromy ensues when an individual’s condition fails to meet the threshold level, which varies between sexes and among individuals and populations. Environmental factors and genetic architecture may also directly influence life history, e.g., by altering gene expression. A strong genetic influence on the anadromy decision means that facultative anadromy can be altered by natural selection driven by changes such as differential exploitation, stocking with farm-reared brown trout, partial barriers to migration, and changes in climate, and freshwater and marine productivity, together with parasite, pathogen and predator abundance resulting in reduced marine survival and growth. Further studies of the factors determining life history choice, together with multiple population estimates of heritability and differential reproductive success (fitness), are required to understand fully the impact of natural and anthropogenic environmental changes on sea trout dynamics

    A holistic and comprensive data approach validates the distribution of the critically endangered flapper skate (Dipturus intermedius)

    Get PDF
    Morphological similarities between skates of the genus Dipturus in the north-eastern Atlantic and mediterranean have resulted in longstanding confusion, misidentification and misreporting. Current evidence indicates that the common skate is best explained as two species, the flapper skate (Dipturus intermedius) and the common blue skate (D. batis). However, some management and conservation initiatives developed prior to the separation continue to refer to common skate (as ‘D. batis’). This taxonomic uncertainty can lead to errors in estimating population viability, distribution range, and impact on fisheries management and conservation status. Here, we demonstrate how a concerted taxonomic approach, using molecular data and a combination of survey, angler and fisheries data, in addition to expert witness statements, can be used to build a higher resolution picture of the current distribution of D. intermedius. Collated data indicate that flapper skate has a more constrained distribution compared to the perceived distribution of the ‘common skate’, with most observations recorded from Norway and the western and northern seaboards of Ireland and Scotland, with occasional specimens from Portugal and the Azores. Overall, the revised spatial distribution of D. intermedius has significantly reduced the extant range of the species, indicating a possibly fragmented distribution range.acceptedVersio
    corecore