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ABSTRACT 

 

While many brown trout (Salmo trutta) populations spend their entire life cycle in 

freshwater, especially as river-lake migrants or river residents, others show facultative 

anadromy. That is, some trout migrate to sea while other individuals of the same population 

remain within their natal river. Sea trout can give rise to resident offspring and vice versa, 

although there is a strong tendency to track the parental life history. Anadromy delivers better 

feeding and thus larger size, which results in higher fecundity in females, enhanced mate 

choice, and other reproductive benefits. River residence, more prevalent in males as 

anadromy conveys fewer benefits, can give higher survival and avoids the energy expenditure 

required by anadromy. Overall, the costs and benefits of anadromy versus residency, 

measured in terms of survival and reproduction, are finely balanced and small changes to the 

cost-benefit equation can lead to evolutionary changes in life history. The decision to be 

anadromous or resident is a quantitative threshold trait, controlled by multiple genes and 

environmental factors. The dichotomous nature of the trait is postulated to be the result of the 
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environmentally influenced physiological condition (e.g. energy status) relative to a 

genetically determined threshold. Anadromy ensues when an individual’s condition fails to 

meet the threshold level, which varies between sexes and among individuals and populations. 

Environmental factors and genetic architecture may also directly influence life history, e.g., 

by altering gene expression. A strong genetic influence on the anadromy decision means that 

facultative anadromy can be altered by natural selection driven by changes such as 

differential exploitation, stocking with farm-reared brown trout, partial barriers to migration, 

and changes in climate, and freshwater and marine productivity, together with parasite, 

pathogen and predator abundance resulting in reduced marine survival and growth. Further 

studies of the factors determining life history choice, together with multiple population 

estimates of heritability and differential reproductive success (fitness), are required to 

understand fully the impact of natural and anthropogenic environmental changes on sea trout 

dynamics. 

 

Keywords: Sea trout; river resident trout; quantitative threshold trait; physiological 

condition; sexual maturation; parental effects. 
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NOMENCLATURE 

 

While many valid species names have been designated for distinct trout lineages and 

morphotypes (e.g. Ferguson, 2004; Kottelat & Freyhof, 2007), brown trout and Salmo trutta 

L. are still widely used as common and scientific species names for the native trout of 

Europe, western Asia and north Africa, and include both sea and freshwater life histories. 

However, it is common practice among anglers and managers to use the term brown trout 

only for non-anadromous trout, although it will be used here in the species context. Within 

brown trout, there are various alternative life histories in respect of migration, reproduction 

and feeding (Frost & Brown, 1967; Elliott, 1994; Klemetsen et al., 2003). In formerly 

glaciated regions in NW Europe many populations have abandoned the anadromy of their 

postglacial colonist ancestors and have adopted a freshwater migratory or resident life 

history, including river-lake migration (adfluvial potamodromy), extensive migrations within 

rivers (fluvial potamodromy), river resident, and lake resident (Ferguson, 2006). Thus sea 

trout, where trout migrate to sea to feed before returning to their natal river to breed 

(anadromy), is just one extreme of a continuum of life histories, with some individuals 

pursuing more than one option within their lifetime. Many authors use the term ‘freshwater 

resident’ in the sense of river resident, while some incorrectly use it to include all freshwater 

forms including migratory ones, in spite of the fact that the dictionary definition of resident is 

“an animal that does not migrate”. Because of this ambiguity, the term should not be used but 

river resident or lake resident specified as appropriate to account for important evolutionary 

differences in brown trout life history variation. Use of the general term ‘migratory’ has also 

led to some confusion with studies involving adfluvial migrants being incorrectly cited by 

others as referring to anadromy. Where there is likely to be confusion, the term ‘migratory’ 

should be qualified as above. 

A major physiological difference between freshwater migration and anadromy is the 

changes required due to the different ionic strengths and osmolality experienced by sea trout. 

The distinction breaks down further in areas such as the Baltic Sea where salinity is around 

0.1-0.2% in the far north and east compared to more than 3% in oceanic sea water 

(Encyclopedia of Earth). In the Baltic, fry and 0+ parr can migrate to the sea (Landergren, 

2001) and spawning can occur in this brackish water (Landergren & Vallin, 1998). Similarly 

in the Burrishoole system (Western Ireland) parr migrate to the brackish Lough Furnace and 

appear to remain there, or in the estuary, before returning to freshwater as un-silvered trout 

(Poole et al., 2006). 
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Adfluvial migration is probably similar in benefits to anadromy (see below) but lowers the 

relative costs. In regions such as Ireland and Scotland, with numerous freshwater lakes, an 

adfluvial life history for brown trout is estimated to be numerically the most common one, 

based on the relative abundance of such populations. Migration to lakes can occur where 

there is no barrier to anadromy and in many cases both adfluvial and anadromous life 

histories are present in the same catchment, with the adfluvial form often predominating (e.g. 

Poole et al., 2006). In Loch Lomond (Scotland), a large freshwater lake, carbon stable-

isotope analysis showed that individual brown trout appear to repeatedly move between the 

lake and estuarine / marine environments (Etheridge et al., 2008), which concurs with angling 

reports of non-breeding sea trout of various sea ages in the lake (Balmaha Anglers). In this 

case there is only a short river (ca. 10 km) separating the loch and the River Clyde estuary. 

For rainbow trout (Oncorhynchus mykiss (Walbaum)), anadromy is also less common in river 

systems with large lakes (Kendall et al., 2015). Holecek & Scarnecchia (2013) regarded the 

switch in a rainbow trout population to an adfluvial life history as “exercising the next best 

option” when anadromy was prevented by dam construction. 

Although a simple dichotomy between sea trout and freshwater trout belies the large 

temporal and spatial diversity of life history patterns in brown trout (Cucherousset et al., 

2005), it does reflect the emphasis of many studies relevant to sea trout. Thus, this review 

concentrates on the factors responsible specifically for adopting an anadromous life history 

and mainly considers only the two extremes of sea trout, and trout which spend their entire 

life within their natal region of a river (river resident, hereafter simply ‘resident’). Due to the 

limited studies on the genetics of anadromy in brown trout, this review draws from work on 

other species in the Salmoninae sub-family (salmonines), especially rainbow trout, where 

again the species name is often used to denote freshwater life histories and steelhead its 

anadromous form. 

 

BACKGROUND BIOLOGY 

 

This section does not attempt to provide a complete overview of sea trout biology but 

rather to deal only with those aspects relevant to discussions below. A more detailed review 

is given by Thorstad et al., (2016). Sea trout are found in western Europe from the River 

Miño (Caballero et al., 2013), which forms the northern border between Portugal and Spain, 

northwards to Scandinavia and the Cheshkaya Gulf in NW Russia, including Iceland and the 

Baltic Sea (Klemetsen et al., 2003), although natural stocks in Finnish rivers have largely 
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been lost (Kallio-Nyberg et al., 2010). Within this range sea trout biology varies 

considerably. Migration to sea as smolts varies from age 1+ in the southern part of the range 

to 9+ in the north with most smolts being 2+ and 3+ over large parts of the distribution area 

(Jonsson & L’Abée-Lund, 1993; Jonsson et al., 2001). The period spent at sea ranges from a 

few weeks (finnock) to eight years, with average sea residence times generally decreasing 

with increasing latitude (L’Abee-Lund et al., 1989). In Norway, where lakes are present in a 

catchment, overwintering by both post-spawning and immature sea trout is generally in 

freshwater (Klemetsen et al., 2003) although in small rivers with poor wintering conditions 

both juvenile and mature sea trout can feed  at sea during the winter (Knutsen et al., 2004; 

Jensen & Rikardsen, 2012). Overwintering can occur in rivers other than the natal one and 

brown trout have been recorded wintering up to four times elsewhere before returning to the 

natal one for reproduction (Jensen et al., 2015). Where the winter is spent in freshwater, the 

seasonal migration to sea can be repeated annually (Jonsson, 1985; Elliott, 1994; Klemetsen 

et al., 2003) although former sea trout can subsequently adopt a freshwater life history, a 

phenomenon also known in rainbow trout (Null et al., 2013). In Dolly Varden (Salvelinus 

malma (Walbaum)) older, larger individuals cease to migrate (Bond et al., 2015). It is 

increasingly recognised that sea trout can spend a minority of their life at sea with the rest 

spent in lakes or rivers. Hodge et al., (2016) identified 38 life history categories at maturity in 

rainbow trout, these involving different combinations in patterns of movement between 

freshwater and the sea, age of maturity, and occurrence of repeat spawning. 

Sea trout feed mainly in estuaries and coastal waters (Middlemas et al., 2009; Davidsen et 

al., 2014a) with most individuals in Norway staying within 100 km of the river mouth 

(Jonsson & Jonsson, 2005). However, tagged sea trout have crossed the North Sea from 

France to Scandinavia (Euzenat, 1999). It has been suggested that estuaries provide better 

feeding than rivers but with reduced likelihood of predation and reduced salinity compared to 

the open sea (Thorpe, 1994a), although fluctuating salinity may actually produce greater 

physiological stress than the higher, but more stable, salinity of sea water (Jensen & 

Rikardsen, 2012). 
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FACULTATIVE ANADROMY AND POPULATION STRUCTURING 

 

In brown trout, there is a continuum from completely freshwater populations to completely 

anadromous ones (Jonsson & Jonsson, 2011). Many populations show facultative anadromy 

with some individuals migrating while other individuals remain resident within their natal 

river, sometimes referred to as ‘partial migration’ (Dellefors & Faremo, 1988; Jonsson & 

Jonsson, 1993), although ‘partial’ does not qualify the migration. Even for brown trout 

populations in close geographical proximity, the proportion of individuals showing anadromy 

can vary considerably (Jonsson & Jonsson, 2006a), which suggests that complex genetic and 

ecological factors influence the balance between anadromy and residency among populations 

(Kendall et al., 2015). Understanding the relative importance, and interplay, of the 

determinants of anadromy within facultatively anadromous populations is a fundamental 

requirement for their effective management. Increased life history diversity potentially 

decreases overall population fluctuations as a result of environmental changes, in an 

analogous fashion to the stabilising influence of asset diversification in a financial portfolio 

(Schindler et al., 2015). 

Offspring of sea trout and resident brown trout may show different life histories from their 

parents (Jonsson, 1982). Courter et al., (2013) also found that female resident rainbow trout 

produced anadromous offspring that survived and returned to spawn. However there is often 

a strong tendency to track the parental life history (Jonsson, 1982). Studies using molecular 

genetic markers, such as allozymes, microsatellites and mitochondrial DNA (mtDNA), have 

failed to detect any genetic differentiation between samples of sea and resident brown trout 

obtained from exactly the same area of a river rather than adjacent ones, i.e. truly sympatric 

rather than parapatric populations (Hindar et al., 1991; Cross et al., 1992; Charles et al., 

2005, 2006). Similar studies in rainbow trout have also failed to identify differentiation 

(Docker & Heath, 2003). However, in the absence of a high level of reproductive isolation, 

such effectively neutral markers would not be expected to reveal differentiation (Ferguson, 

1994). It should be emphasised strongly that this lack of detectable genetic differentiation 

between anadromous and resident salmonines based on such markers does not imply that 

there is not a genetic basis to anadromy because heritable traits segregate within families and 

lineages without requiring reproductive isolation. 

The consensus from studies carried out to date is that anadromous and resident conspecific 

salmonines can freely interbreed, though the extent of reproductive isolation varies among 

species. Jonsson (1985) and Schreiber & Diefenbach (2005) noted female sea trout and 
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resident male brown trout at the same spawning grounds and suggested that the unequal sex 

ratio (see below) led to resident males breeding with anadromous females. Similarly for 

brook charr (Salvelinus fontinalis (Mitchill)), Thériault et al. (2007) found that interbreeding 

was due to resident males mating with both resident and anadromous females. The sneaking 

behaviour of these small males prevents any genetic differentiation that could arise due to 

size-assortative mating (Dodson et al., 2013). 

There are a few examples of genetic differentiation between sympatric anadromous and 

resident rainbow trout (Zimmerman & Reeves, 2000; Docker & Heath, 2003). In the first 

case, the apparent differentiation of the two forms was associated with spatial and temporal 

segregation of spawning activities (Zimmerman & Reeves, 2000), as was the genetic 

differentiation between resident and anadromous brook charr (Boula et al., 2002). In another 

situation (Narum et al., 2004), where genetic divergence between sympatric steelhead and 

resident rainbow occurred in one tributary of a river system but not in another, the genetic 

differentiation appeared to have resulted from stocking with a genetically distinct steelhead 

stock. At the other end of the continuum, anadromous sockeye salmon (O. nerka) and the 

non-anadromous form, known as kokanee, display a combination of reproductive isolating 

mechanisms and selection against hybrids that commonly results in significant genetic 

differences between the forms even when they are sympatric, despite some interbreeding 

(Foote et al., 1989; Wood & Foote, 1996). 

Typically where genetic differentiation is detected between predominantly anadromous 

and principally resident brown trout populations within rivers there is a complete or partial 

upstream barrier to sea trout migration (e.g. Skaala & Nævdal, 1989). However, such 

allopatric genetic differentiation is typical of brown trout populations (Ferguson, 1989) and 

may simply represent independent evolution rather than being correlated with life history. 

Where populations exist above falls there is clearly strong selection against migration, as 

such migrants are lost from the population, resulting in genetic differences in respect of life 

history determinants as well (Thrower et al., 2004; Thrower & Hard, 2009). 

In a few cases significant genetic differentiation has been reported between parapatric/ 

allopatric populations of both brown trout and rainbow trout where no physical barrier to 

interbreeding occurs. In the Glenarrif River (NE Ireland) significant allozyme and mtDNA 

differences were found between sea trout and resident trout samples taken ca. 1 km apart in 

the river (Fleming, 1983; unpublished studies cited in Ferguson, 2006). The resident trout 

sample was taken immediately below an upstream impassable waterfall and was genetically 

more similar to samples from above the fall than to the downstream sea trout sample. It 
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seems, therefore, that this resident population was formed by displaced individuals from 

above the falls, and has remained distinct through spatial or other reproductive isolation. 

Similar situations have been found for rainbow trout in small Californian rivers where above 

waterfalls residents sometimes descend over the falls. These remain near the base of the falls 

and form populations that are reproductively isolated from the below falls stocks (Pearse et 

al., 2009; Hayes et al., 2012). Berejikian et al., (2013) found that below barriers the 

proportions of resident rainbow trout were greater in the upper reaches, suggesting that 

above-barrier populations may be contributing to these resident populations through ongoing 

migration. Hayes et al., (2012) and Wilzbach et al., (2012) detected movement to reaches of 

the stream below a waterfall by a small proportion of rainbow trout tagged above it, with 

some detected near the entrance to the sea. In the Wilzbach et al., (2012) study some tagged 

individuals were also released 5 km downstream of the falls and, while most remained within 

a few hundred metres of the release site, a few moved downstream. 

 

WHY IS ANADROMY FACULTATIVE IN BROWN TROUT AND SOME OTHER 

SALMONINES? 

 

BENEFITS OF ANADROMY 

 

Anadromy potentially offers many benefits to individuals continuing with this postglacial 

ancestral life history, while at the same time these are countered by ensuing costs 

(Rounsefell, 1958; Gross, 1987; Quinn & Myers, 2004; Brönmark et al., 2014) (summarised 

in Table 1). Thus anadromous and resident life histories show compromises between survival 

to first reproduction and the size and age at reproduction. Migration to the sea, where in 

temperate regions productivity and thus food availability is higher than in freshwater (Gross 

et al., 1988), results in larger size, higher fecundity and greater energy stores at reproduction 

(Fleming & Reynolds, 2004; Jonsson & Jonsson, 2006a). However, it delays maturity and 

lowers the probability of surviving to reproduce. While sexual maturation and the choice of 

anadromous life history are closely interconnected, they are also conflicting strategies that 

need to be considered together (Thorpe, 1994b; Thorpe & Metcalfe, 1998; Sloat et al., 2014). 
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BENEFITS OF RESIDENCY 

 

Switching from anadromy to residency conveys many benefits, which can also be seen as 

the costs of anadromy. These include less risk of predation during migration and in the 

marine environment. In Denmark, as a result of predation by fish and birds, smolt mortality 

during passage through lakes and reservoirs is substantially higher than in rivers (Jepsen et 

al., 1998). Weirs for water offtake can also cause substantial mortalities and, together with 

predation, are the crucial factors responsible for smolt mortality in Danish rivers (Rasmussen, 

2006). Predators may be attracted to concentrations of migrating smolts and adults (Wood, 

1987a, b; Greenstreet et al., 1993; Hendry et al., 2004). The number of trout predators 

appears to be higher at sea than in fresh water, including lakes (Jonsson & Jonsson, 2004) and 

predation is a major mortality factor shortly after the smolts reach the sea (Dieperink et al., 

2002). 

In addition, residency avoids the energetic costs associated with migration. Increased 

mortality may result from energy depletion during upstream migration especially if there are 

waterfalls or other barriers that cause delays (Hendry et al., 2004). Bohlin et al., (2001) found 

a negative correlation between altitude and the extent of anadromy in Swedish trout 

populations, suggesting that anadromy is less common in populations where migration 

involves greater energy expenditure (Wood, 1995). However, altitude is also related to other 

factors such as water temperature and flow regimes that can have a proximate influence on 

migration (see below). Jonsson & Jonsson (2006b) found that the condition factor (i.e. mass / 

length ratio) of returning sea trout decreased as they migrated progressively inland. 

 

SEX AND FACULTATIVE ANADROMY 

 

Often within brown trout populations, with both sea trout and residents, there is a sex bias 

with typically females predominating among anadromous trout and males among residents 

(Jonsson, 1985; Dellefors & Faremo, 1988; Elliott, 1994). In 17 coastal rivers in Norway 

Jonsson et al. (2001) found that, on average, 50% of the males but only 4% of the females 

spawned as residents. In the Glynn River (N. Ireland), Fleming (1983) found that above a 

series of impassable waterfalls the sex ratio was not significantly different from equality. 

However, in the section below the waterfalls, of 248 mature resident trout only two were 

females (0.8%) but in 111 smolts and mature sea trout that were examined 104 (94%) were 

female. A sex ratio bias has also been observed in O. mykiss (Rundio et al., 2012). 



10 

 

A sex bias would be expected from the balance of benefits of the two life histories 

(Hendry et al., 2004). Thus, female reproductive success is generally limited by gamete 

production with a larger body size giving greater fecundity and egg size (Fleming, 1996; 

Quinn, 2005). Larger females can attract mates, acquire and defend better spawning sites in a 

wider range of substrate sizes, and excavate deeper nests (Fleming & Reynolds, 2004).  

Compared with females, male reproductive success is typically limited by access to mates 

(Fleming, 1998) rather than gamete production since even small males can produce millions 

of sperm (Munkittrick & Moccia, 1987). While a larger size can be of benefit to males in 

attracting and defending mates, obtaining a large body size is less critical for male 

reproduction because instead of aggressive defence of females, a tactic typically displayed by 

larger anadromous males (Esteve, 2005), they can adopt a ‘sneaking’ tactic allowing 

successful egg fertilisation at a small size (Gross, 1985; Hutchings & Myers, 1988). Thus 

males more often mature as residents since they are less dependent on large body size for 

reproductive success and consequently mature across a much greater range of ages and sizes 

(Jonsson & Jonsson, 1993). Early maturity in males also results in reduced pre-reproductive 

mortality (Gross & Repka, 1998). 

 

NATURAL SELECTION ON ANADROMY VERSUS RESIDENCY 

 

Facultative anadromy and residency in brown trout and other salmonines can be explained 

as alternative tactics within a conditional strategy (Dodson et al., 2013; Sloat et al., 2014; 

Kendall et al., 2015); individuals within a population can adopt either tactic. Whichever tactic 

is more successful under particular environmental conditions will result in the individuals 

adopting that tactic leaving more offspring, that is, they will have higher Darwinian fitness 

(Gross, 1987; Brönmark et al., 2014). Taking into consideration that there is a partial genetic 

basis to variation in life history choice (see below), positive natural selection for one or other 

tactic (e.g. anadromy) will tend to increase the frequency of that tactic over generations. 

While the expected outcome is that populations would become fixed for one tactic, the 

relative benefits and costs can vary temporally as a consequence of diverse factors including 

different environmental conditions, population density and composition. These changes in the 

cost-benefit equation result in many populations displaying both life histories, to a greater or 

lesser degree (see Table 2). That is, fluctuating natural selection on alternative phenotypes is 

expected to lead to the evolution of flexible life history strategies such as facultative 

anadromy, provided that reliable environmental cues are available for individuals (see section 
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on Proximate Environmental Factors). It is also possible that frequency dependent selection 

plays a role where increased frequency of one life history could allow selection to favour the 

other until a balance is achieved (Hecht et al., 2015). Thus, as the migratory fraction 

increases, the resident fish will have reduced competition for food. Similarly, the rarer male 

type may have a competitive advantage in spawning. It is worth noting that similar balancing 

selection mechanisms (e.g. fluctuating environments, frequency dependence, opposing 

selection between the sexes) are also likely to explain why some populations of brown trout 

are capable of producing either river residents or adfluvial migrants that use lakes (instead of 

the sea) to grow larger, or why yet other populations are characterised by more complex 

mixes of river residents, adfluvial migrants and sea trout. Variability in the extent of 

anadromy or migration within populations, and among geographically adjacent populations, 

would suggest that the relative benefits and costs are finely balanced and thus evolutionary 

changes may occur rapidly as a result of relatively small alterations to any of the underlying 

factors (see below for more detailed discussion). 

If anadromy or residency is advantageous in particular situations, it would be expected 

that compensatory adaptations would occur to increase benefits relative to costs (Hendry et 

al., 2004). Jonsson & Jonsson (2006b) found that sea trout body size, age at sexual maturity, 

relative fecundity, and the ratio of fecundity to egg mass increased with distance from the sea 

to the spawning grounds, consistent with the hypothesis that selection favours a larger body 

size when migratory costs are greater. Bernatchez & Dodson (1987) noted that anadromous 

salmonines that migrated longer distances were more efficient in energy use. Freshwater 

residents can have, although not invariably, larger ova than similar sized anadromous females 

(Jonsson & Jonsson, 1999) and increased survival of young may compensate to some extent 

for lower fecundity. 

Due to greater survival, residents should be more likely to show multiple spawning 

(iteroparity) than anadromous fish and this can increase the total lifetime fecundity. In a 

rainbow trout population, although female residents produced on average 1400 eggs, 

compared with 3500 eggs for steelhead, most of residents spawned a second time whereas 

this was the case for less than 5% of steelhead (Schroeder & Smith, 1989). However, repeat 

spawning in sea trout would appear to be more common than in steelhead as, in a survey of 

102 European populations, Jonsson & L’Abée-Lund (1993) found that the proportion of 

repeat breeders in sea trout was from 30% in northern rivers to 60% in southern ones. 

Individual sea trout have been recorded spawning up to 11 times (Harris & Milner, 2006). 
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COMPONENTS OF ANADROMY 

 

It is important to recognise that anadromy consists of a number of distinct, but interlinked, 

consecutive components. In particular, it is important to differentiate between the genetic and 

environmental factors that drive the individual’s choice of anadromy or residency and the 

subsequent downstream changes that take place as a consequence of this decision. Thus 

fundamental to facultative anadromy is the decision on whether to migrate or to remain as a 

resident in the river and mature. This decision may involve one or more ‘decision windows’, 

which may take place a considerable time before external evidence of migration occurs 

(Hecht et al., 2015; McKinney et al., 2015) in the form of the changes associated with 

smoltification, i.e. the changes that occur prior to and during downstream movement to the 

sea as smolts. Failure to recognise this distinction between the decision process and 

consequential smoltification has led to misinterpretation of some studies. Examining the 

changes in gene expression in individuals during smoltification primarily indicates those 

genes which determine the physiological and other changes outlined below. 

In addition to smoltification other components of anadromy include migrations to and 

from the sea, which involve directed movement and precise navigation to reach appropriate 

feeding habitats and return to natal spawning grounds. Return migration to freshwater may be 

triggered by the onset of sexual maturation, although such return does not necessarily involve 

spawning and, as noted by Quinn et al., (2016), the delay between return migration and 

spawning is highly variable. 

 

SMOLTIFICATION 

 

Smoltification involves a set of changes prior to seaward migration (Hoar, 1988), with 

subsequent return to freshwater involving a reversal of these. Smoltification happens in 

response to environmental cues (McCormick et al., 1998; Jensen et al., 2012) with the brain 

being the main integrator of this information, and thus the main regulator of the process 

(McKinney et al., 2015). This occurs through interpretation of seasonal cycles, often via the 

effects of photoperiods on circadian rhythms (‘biological clocks’), and through various 

hormones (Björnsson et al., 2011). 

The most obvious external aspect of smoltification is the body colouration changes that are 

necessary for the different camouflage requirements of bottom dwelling life in a river 

compared to mid-water life in the sea. In rivers, dark backs and spotted sides allow fish to 
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blend with bottom rock and gravel patterns. Conversely, light bellies, silver sides, and dark 

backs help camouflage fish in a mid-water marine environment as they will not stand out 

against the background, irrespective of the direction from which they are viewed by 

predators. Similar silvering also occurs in some pelagic lake dwelling brown trout (Crozier & 

Ferguson, 1986; Olsson & Greenberg, 2004) as it is an adaptation for mid-water camouflage 

and is not specifically associated with anadromy. There are also changes in shape, which are 

likely associated with greater swimming efficiency, with the snout becoming more pointed, 

the body slimmer and more streamlined, and a lengthening of the caudal peduncle (Hard et 

al., 1999). 

Smoltification involves physiological and biochemical adjustments including changes in 

visual pigments, haemoglobin, olfactory sensitivity, buoyancy (swim bladder size), 

metabolism, and salinity tolerance (Dann et al., 2003; McCormick et al., 1998). Most of the 

ionic regulation is carried out by the gills and involves an increase in enzymes such as gill 

Na+/K+-ATPase together with a switch in its isozymes fromα1a, which is most abundant in 

freshwater, to α1b, the dominant isozyme in seawater (McCormick et al., 2009, 2013). Sea 

survival increases with smolt size possibly because they have better osmoregulation and are 

less vulnerable to predation (Klemetsen et al., 2003). 

Studies at the smoltification stage are the earliest at which it is possible to externally 

differentiate migrants from residents within a population and many comparative studies on 

smolts and non-smolts have been undertaken for this practical reason. To examine earlier 

genetic and phenotypic changes between migrants and residents currently requires the 

establishment of offspring lines based on populations of predominantly migrant or resident 

life histories. Over the past century, rainbow trout throughout their natural range in western 

North America have been blocked from anadromy by construction of artificial barriers and by 

artificial translocations above natural barriers (Thrower et al., 2004; Phillis et al., 2014; 

Pearse et al., 2014). These multiple replicate ‘selection experiments’ have provided valuable 

material for the investigation of phenotypic and genetic differences between steelhead and 

resident rainbow trout. 
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DETERMINANTS OF THE ANADROMY / RESIDENCY DECISION 

 

GENETIC FACTORS 

 

It has been known for some time, from the results of rearing and translocation 

experiments, that there is a genetic foundation for the anadromy ‘decision’ in brown trout. 

Skrochowska (1969) released reared progeny of anadromous, resident and reciprocal hybrid 

parentage. Subsequent recaptures indicated a propensity for offspring to follow parental life 

history, with hybrids being intermediate. Jonsson (1982) reciprocally transplanted juvenile 

brown trout between an isolated lake containing a resident population and a lake downstream 

containing a sea trout population, the juvenile growth rates in both populations being similar. 

Subsequent downstream movement was more frequent in the anadromous rather than the 

resident trout irrespective of the lake of release. 

As with brown trout, resident rainbow trout can produce anadromous offspring and vice 

versa. However, again the predominant pattern is for offspring to track the parental life 

history (Zimmerman & Reeves, 2000; Seamons et al., 2004; Zimmerman et al. 2009; Hayes 

et al., 2012). Overall, many genetic studies carried out on salmonines have confirmed that 

there is genetic variation for the propensity for facultative migration (reviewed by Kendall et 

al., 2015, with emphasis on rainbow trout) but with considerable developmental plasticity. 

Sex associated differences in anadromy within populations under communal environmental 

conditions are also a clear indicator of a genetic basis to life history. 

Unfortunately, heritability estimates, i.e., the contribution of genetic variance to the 

variability of life history among individuals in a given population, have been determined in 

only a few studies. Thrower et al., (2004) bred pure and reciprocally-crossed lines of 

anadromous and resident rainbow trout from Sashin Creek (Alaska), the residents being from 

an above waterfalls population that had been artificially established from the anadromous 

stock 70 years previously. After two years in a common hatchery environment they found 

that narrow sense heritability (h2 - additive genetic variance only) estimates for freshwater 

maturation and smolting were between 0.44 - 0.51 and 0.45 - 0.56 respectively. Hecht et al., 

(2015) found a modal h2 estimate of 0.61 (0.39 - 0.77) for life history in the same hatchery 

lines but using a larger pedigree. They also found significant genetic correlations of life 

history with growth rate, size, condition factor, and morphological traits, which themselves 

showed moderate heritabilities. Heritability estimates (h2) for anadromy in a natural 

population of brook charr were 0.52 - 0.56 (Thériault et al., 2007). All these heritability 
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estimates are within the range of values reported for threshold traits (reviewed by Roff, 

1996). While no heritability estimates have as yet been published for sea trout, the similarity 

of steelhead and brook charr estimates under very different environments and, in spite of the 

few populations examined, may suggest heritability of a similar magnitude, Thus, 

approximately half of the variability in life history among individuals within a population is 

likely to be due to additive genetic variance for this trait, with the remainder attributed to 

non-additive genetic variance, parental effects and environmental influences. However, it is 

very important to acknowledge that heritability estimates are specific to the population and 

particular environmental conditions examined. Therefore, explicit estimates are required for a 

range of brown trout populations under different conditions before credence is given to any 

estimate. What is clear, however, is that there are both strong genetic and strong 

environmental influences on facultative anadromy within salmonine populations. 

In reciprocal common garden experiments involving steelhead from two populations, 

Doctor et al., (2014) demonstrated that both genetics and temperature play an important role 

in determining growth rate, condition-factor, and proportion of age-1 smolts in steelhead. 

Broad-sense heritabilities (H2 – all genetic variance) for the two populations at different times 

of year and for these three traits, ranged as follows: 0.49 – 0.60; 0.07 – 0.59; 0.69 – 0.77. 

Studies of the molecular genetic basis of anadromy have identified several gene markers 

and chromosome regions associated with alternative life histories in rainbow trout (Nichols et 

al., 2008; Martínez et al., 2011; Narum et al., 2011; Hecht et al., 2012). Pearse et al., (2014) 

showed that a large region of one rainbow trout chromosome, Omy5, was strongly associated 

with life history in 13 resident (above a barrier) and 8 anadromous populations. The genes in 

this region appear to be tightly linked, possibly as the result of a chromosomal inversion or 

other rearrangement limiting recombination. The common genetic basis for life-history 

variation in a geographically varied set of populations probably results from strong parallel 

natural selection acting on one or more genes in this region that influence life history traits. 

This study supports previous suggestions (Nichols et al., 2008; Hale et al., 2013) that this 

gene group on Omy5 represents a ‘master control region’ influencing rainbow trout life 

history. 

In a key study involving the offspring of wild anadromous and resident rainbow trout from 

Sashin Creek reared under common hatchery conditions for one year, McKinney et al. (2015) 

found differential gene expression in the brain between these lines for 1982 genes (7% of 

genes examined). Differences between anadromous and resident offspring were detected 

from hatching onwards with the greatest number of gene differences being found at eight 
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months of age, more than a year before obvious external appearance of smolt transformation. 

Patterns of gene expression during development differed between males and females, which 

may reflect the fact that males in the resident population mature earlier than females 

(McKinney et al., 2015). Genes showing differential expression included those involved with 

light sensitivity, circadian biological rhythms, growth, morphology, and olfactory imprinting, 

the latter being important in homing. A caveat to the use of the offspring of allopatric  

anadromous and resident trout is that aspects other than life history traits (including traits 

correlated with the anadromy decision, such as growth rate) may differ as a result of 

evolutionary divergence, although their recent common ancestry (c70 years) should minimise 

this. 

 

PROXIMATE ENVIRONMENTAL FACTORS 

 

Many studies have shown that environmental influences, including those during embryo 

development within the egg (Jonsson & Jonsson, 2014a), collectively determine a trout’s 

developmental and physiological state (i.e. ‘condition’), which has a proximate influence on 

the decision on whether to migrate or remain resident. Key aspects of condition potentially 

include size, growth rate, and ‘energy status’ including lipid levels and standard metabolic 

rate (see references below). 

Size and growth rate of migrants are the aspects of condition most easily, and thus 

commonly, measured in association with life history. However, the relationship is 

complicated by time of measurement relative to emigration time, sex, age, temperature, and 

potentially genetic background. For example, size at smoltification may not reflect size at 

decision time perhaps a year earlier (Acolas et al., 2012; Beakes et al., 2010; Sloat, 2013; 

McKinney et al., 2015). In the meantime residents may have diverted energy from growth to 

sexual maturation. Conversely, as survival at sea is size dependent (Klemetsen et al., 2003), 

pre-migrants may have accelerated growth during this period. Also, emigration may occur 

over several successive years for the same cohort. Not surprisingly then, the relationship of 

size and growth to life history has varied (in both sign and magnitude) among studies and 

appears to be population specific to some extent. Body size in a brook charr population was 

correlated with age of migration (Thériault & Dodson, 2003), with smaller fish at age 1+ 

delaying migration to age 2+; however, larger 1+ fish that migrated were no different in size 

to 1+ fish that remained resident (Thériault & Dodson, 2003). Thériault et al., (2007) 

subsequently reported, for the same population, a negative correlation between the size of age 
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1+ parr and their propensity to remain in the river at that age, but these ‘residents’ likely 

included fish that would have migrated at age 2+. These results suggest that, at least for 

facultatively anadromous brook charr, the smallest 1+ parr are constrained from smoltifying, 

but this does not necessarily imply that size at age 1+ is the actual cue that triggers anadromy 

or residency; although it may be correlated with the true physiological cue. 

Failure to account for sex of the juveniles, and even their parents, can make it difficult to 

evaluate effects of size and growth on migration in some studies. Males from resident 

rainbow trout mothers matured at smaller sizes than those from anadromous mothers 

(Berejikian et al., 2014). McMillan et al., (2012) found no difference in size between migrant 

and resident rainbow trout unless males and females were examined separately.  

Some studies have found large size and fast growth associated with migration while others 

have found the opposite, suggesting that any relationship between life history and size is 

purely coincidental correlation. Jonsson (1985) found that the largest and fastest growing 

juveniles became anadromous while those with medium growth rates became residents, and 

the slowest growing individuals became sea trout but at an older age. Hecht et al., (2015) 

found a significant correlation between life history and condition factor with steelhead 

migrants showing a lower mean condition factor than residents at 12, 15 and 24 months post- 

fertilisation, the last being at smoltification. This indicates that the life history decision was 

taken during the first year of life in this experimental population derived from Sashin Creek 

steelhead and residents. 

Various studies suggest that brown trout become migratory due to energy limitation in 

natal rivers. Accordingly they remain in the river until growth starts to level off (i.e. they 

approach asymptotic body size), at which point they either mature or migrate to better 

feeding areas (Jonsson & Jonsson, 1993). It has been suggested that population asymptotic 

size, especially for females, is one of the best predictors of life history (Sloat & Reeves, 

2014). That is, if only a small size can ultimately be reached in the river then migration 

occurs. Increased juvenile density can result in increased competition for food and space 

resulting in fewer fish reaching the necessary condition to mature as residents (Jonsson & 

Jonsson, 1993). Hence food limitation may be a significant factor. O’Neal & Stanford (2011) 

found that resident brown trout dominated in smaller tributary rivers of the Rio Grande in 

Patagonia, where invertebrate biomass was two to three times higher than in larger 

tributaries. The latter either supported a mix of anadromous and resident individuals or were 

dominated by anadromous fish. Marco-Rius et al., (2013) found strong evidence for positive 

density dependence determining anadromy in brown trout with migrants maximising growth 
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by moving into the sea. It is also important to acknowledge that food quality, i.e. energy 

value, may be as important as food quantity (Kendall et al., 2015). 

Olsson et al., (2006) transplanted offspring of adfluvial brown trout between two sections 

of a river with different fish densities. Adfluvial migratory behaviour developed in the river 

section with high trout density and low specific growth rate, whereas residency developed in 

the section with the converse situation. Cucherousset et al., (2005) found that life history 

traits varied among brown trout cohorts due to environmental variability and that trout with 

higher metabolic needs were more likely to migrate. Wysujack et al., (2009) fed hatchery-

reared offspring of adfluvial brown trout from the same population at three different levels 

and found that low food availability, which was associated with low growth rates, increased 

the proportion of migrants: more so for females than males. Although the trout were from 

migratory parents, at the lowest food level 17% were residents and at the highest 42%. Jones 

et al., (2015) provided hatchery trout, derived from an adfluvial stock, either high or low food 

provisions in the autumn, winter or spring prior to release in the spring and found that spring 

food reduction caused increased smolting. However, they do not indicate whether those that 

did not smolt did so when older. This issue is shared by several published studies, including 

those citing Atlantic salmon studies, which are more about the age of smolting rather than the 

migration / residency decision. 

Van Leeuwen et al., (2015) reared brown trout offspring of allopatric (different tributaries 

of River Tweed) river-resident and anadromous parents for seven months under high-, mid-, 

or low-food availability. They were then made to compete for feeding territories in a semi-

natural river channel. Parental migration trait had a significant effect on dominance status in 

territorial interactions; offspring of anadromous fish dominated equivalent sized offspring of 

residents, but only when both were reared under the intermediate food regime. The results 

suggest that the inherited migratory tendency of the offspring interacts with the 

environmental conditions to influence competition for feeding territories and thus the 

probability of migration.  

Metabolism, rather than actual growth or size, may be important in determining life 

history. Individuals that eventually become anadromous often have higher metabolic rates as 

parr, and thus become energy constrained sooner than those that become residents and 

metabolic rate differences can have a genetic basis (Sloat & Reeves, 2014) Greater metabolic 

costs can lead to lower energy efficiency and reduced lipid storage, the latter being an 

important component in maturation (McMillan et al., 2012). Forseth et al., (1999) found that 

faster growing adfluvial brown trout became migratory earlier, albeit at a smaller body size 
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than slower growing individuals which migrated one year later. Migrants maintained higher 

metabolic rates and were energetically constrained (i.e. growth rate could not be sustained) at 

a younger age by limited food resources in the river. Under conditions of limited food 

availability, fish with lower metabolism will meet their metabolic requirements easier, a 

tendency that should lead to residency. Future migrants in brook charr also exhibit lower 

growth efficiencies and higher associated metabolic costs than future residents (Morinville & 

Rasmussen, 2003). Lipid storage, the major source of energy for maturation (Tocher, 2003) 

may likewise be a good predictor of life history. In rainbow trout, McMillan et al., (2012) 

found that larger males with higher lipid levels had a greater probability of maturing as 

residents at age 1+. 

Temperature appears to be a key factor in the migratory decision (Brannon et al., 2004; 

Sloat & Reeves, 2014), with both absolute temperature and variation in temperature being 

important (Kendall et al., 2015). Temperature is clearly linked to food availability, feeding 

activity, metabolism and lipid storage, and may also have a direct influence as a stressor on 

the migratory decision (Sogard et al., 2012). McMillan et al., (2012) found an inverse 

relationship between individual condition and water temperature as growth was greater in 

warmer streams while whole body lipid content was higher in cooler streams. This 

observation suggests one possible mechanism whereby temperature can influence life history. 

In a common garden experiment at different temperatures, Sloat & Reeves (2014) found that 

individuals of both sexes with the fastest growth, within their respective temperature 

treatments, had a greater probability of freshwater maturation (i.e. residency), but higher 

temperatures resulted in decreased freshwater maturation despite significantly increasing 

growth. 

Further environmental factors associated with the migration/residence decision include 

water flow rate, although again the relationship is complex. Female residency in rainbow 

trout increased with decreasing mean annual flow (Mills et al., 2012), possibly because lower 

water conditions are unsuitable for spawning of larger steelhead females. Conversely, 

Berejikian et al., (2013) found that steelhead were more prevalent in rivers with low flows 

and high temperatures. These latter factors likely operate more as indirect agents of natural 

selection, however, rather than as proximate drivers of individual decisions. 

Expected survival in the natal river measured over the long term, which is likely 

determined by a combination of the factors outlined above, clearly influences what life 

histories should evolve there; for example, low expected survival should select for higher 

rates of anadromy on average. Year-to-year variation in survival in the natal river, or 
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variation in survival across river microhabitats, may also correlate with temporal or spatial 

variation in anadromy within a given river, with individual parr in theory capable of basing 

their migratory decisions on some projection of their likely survival prospects should they not 

migrate (e.g. using current physiological condition as a proximal cue). However, while low 

survival may result in more juveniles selecting anadromy, it may not actually produce more 

migrants because fewer juveniles survive to the smolt stage (Railsback et al., 2014). 

A major unanswered question concerns the extent to which correlations between 

‘environmental’ variables (defined broadly to include aspects such as individual condition) 

and the anadromy/residency decision reflect adaptive responses of individuals to predictive 

cues, versus non-adaptive, unavoidable constraints. For example, do individual parr use their 

own condition as a cue to adaptively choose one tactic over the other, or are they simply 

constrained to migrate when in poor condition? It seems logical that migrating to better 

feeding grounds when in poor condition is a ‘good choice’, but testing this rigorously would 

require quantification of how the lifetime fitness of individuals adopting either tactic varies as 

a function of the putative cue (e.g. parr condition during a decision window) they ostensibly 

use to choose one option over the other (Tomkins & Hazel, 2007). If choosing anadromy over 

residency when in low condition results in higher overall lifetime reproductive success on 

average, and vice versa when in high condition, this would be strong evidence that facultative 

anadromy represents adaptive plasticity. Interestingly, theory suggests that at evolutionary 

equilibrium (i.e. when the population has converged on a stable balance of tactic 

frequencies), the mean fitness of anadromous versus resident individuals need not be equal 

(i.e. the condition switch point for choosing anadromy over residency need not correspond 

with the condition value at which the fitness functions cross, although it might) (Tomkins & 

Hazel, 2007). 

 

PARENTAL FACTORS 

 

Parental effects, especially maternal ones, can be both genetically and environmentally 

induced, as well as resulting from unique gene-environment interactions. A maternal 

environmental effect, for example, refers to situations where environmental factors (e.g. 

feeding opportunities) affect some aspect of the mother’s phenotype (e.g. her body size), 

which in turn affects the life histories of her offspring. A maternal genetic effect occurs when 

maternal genotype affects offspring phenotypes independently of the genes she passes on to 

them; for example, genetically large mothers may invest in larger eggs and the resulting 
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offspring may be more likely to adopt one or other life history tactic – not because they 

inherited their mother’s genes for large body size, but because they hatched from large eggs. 

Indeed, egg size affects survival and growth of juveniles, particularly in the early stages of 

life (Einum & Fleming, 1995; Kamler, 2005). Resident trout co-occurring with sea trout have 

larger eggs than corresponding resident only populations (Olofsson & Mosegaard, 1999). 

Jonsson & Jonsson (2006a) argue that this larger egg size of resident brown trout compared 

to sea trout of similar body size may enable the young to compete with sea trout. Although 

few studies have so far been undertaken, epigenetic changes in the parental genomes induced 

by environmental conditions, especially during early development, can be transmitted to their 

offspring (Burton & Metcalfe, 2014). In a study of Atlantic salmon (Salmo salar L.), Burton 

et al. (2013) found that maternal influences on juvenile performance could be related to the 

environment experienced by the mother as a juvenile, as well as to her condition at the time 

of breeding. Jonsson & Jonsson (2016) found that the egg size in Atlantic salmon offspring, 

and thus yolk availability to alevin grand-offspring, is influenced by the temperature 

experienced by the mother during the last two months of egg maturation. 

Berejikian et al., (2014) found that variation in the expression of residency or anadromy in 

both male and female rainbow trout was strongly influenced by maternal life history. Female 

offspring produced by anadromous mothers rarely expressed residency (2%), while the 

percentage of maturing male parr produced by anadromous mothers was much higher (41%) 

across a diversity of freshwater habitats. Both male and female parr that were produced by 

resident mothers were significantly more likely to show residency than the offspring of 

anadromous mothers. In an experimental stocking programme with brown trout, Marco-Rius 

et al., (2013) found a greater sea trout return from sea with crosses involving anadromous 

males, but no maternal effect was observed. In cases where the sex of the offspring is 

unknown, distinguishing such parental effects from sex-specific patterns of gene inheritance 

or expression is challenging, however. 

 

INTEGRATING GENETIC AND ENVIRONMENTAL FACTORS IN THE 

ANADROMY / RESIDENCY DECISION 

 

As outlined above, there are genetic, environmental and parental influences on the life 

history decision in facultatively anadromous salmonines. Thus facultative anadromy is a 

classic quantitative trait controlled by multiple genes with the manifestation dependent on 

interactions between this genetic architecture and environmental factors. However, unlike 
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continuous quantitative traits, the life history decision is one of discrete options controlled by 

a threshold. Thus, at the decision window an individual can decide to migrate, mature as a 

resident, or defer the migratory / residence decision until a later time, resulting in migration 

occurring at different ages. While several threshold models have been proposed, an 

environmentally-cued genetic threshold (ET) model (based on Tompkins & Hazel, 2007) is 

compatible with much of what is known about the life history decision in facultatively 

anadromous salmonines (Kendall et al., 2015). Although it may not be the precise and only 

mechanism involved (see below), a consideration of it provides a useful framework to 

understand how genetic and environmental influences operating via a threshold could result 

in the alternative tactics of migration or residency. If an individual’s condition (for example, 

size, recent growth rate, lipid level) exceeds a genetically determined threshold value at a 

‘decision window’ it will remain in the river and mature there. If it does not, it will become a 

sea trout, delaying maturation until a larger size (Figure 1). In practice, at least two decision 

windows may be necessary to account for some observations (Satterthwaite et al., 2009; 

Dodson et al., 2013). Information on condition is possibly translated into a physiological 

signal via hormonal changes (McCormick, 2009). 

Under the ET model, individuals within a population have different thresholds values in 

respect of condition cues. These values are likely to be continuous and follow a normal 

distribution within the population, as is typical of other quantitative traits (Tomkins & Hazel, 

2007). Variation in threshold values means that the proportion of individuals expressing 

anadromy versus residency depends on both the distribution of variation in thresholds and the 

distribution of the condition of individuals in the population at the time. The distribution of 

tactics within a population can change in the short term as a consequence of environmentally 

induced changes in condition. Evolutionary changes can arise through variations in the mean 

distribution of thresholds up or down, as an outcome of the environmental conditions acting 

as agents of selection in determining relative reproductive success of life history strategies. 

Accordingly if the success of anadromy is reduced due, e.g., to poorer feeding or survival at 

sea, then selection will result in a lowering of mean condition-threshold values, resulting in 

more resident fish (see below for more detailed discussion). 

Threshold values vary between sexes in response to differential selection (Sloat et al., 

2014) (Figure 2). Hence males are likely to have lower condition threshold values than 

females, i.e. they are less likely to be anadromous. This in turn implies that either some of the 

genes affecting the threshold(s) are linked to sex-determining genes, or they exhibit sex-

dependent expression patterns. Thresholds also vary among populations resulting in 
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population-specific norms of reaction between condition and the decision to migrate or 

remain freshwater (Quinn et al., 2009). Populations with a lower incidence of anadromy 

would also have lower mean threshold values than populations with a higher incidence. In 

addition, populations differ in the likelihood of their individuals achieving the condition-

threshold, and this may fluctuate from year-to-year depending on environmental conditions. 

Baerwald et al., (2015) indicated that differential DNA methylation at gene regulatory 

elements may be an important molecular mechanism allowing interactions between an 

organism and its environment to determine life history. They propose that life history may be 

at least partially controlled by an epigenetic response threshold involving an integration of 

parentally inherited factors, environmental factors and developmental history. Interactions 

among these factors can influence life history choice dependent on whether the threshold is 

achieved or not. 

Genes may directly influence the occurrence of anadromy, as in obligate anadromous 

species, irrespective of environmental influences. However, it could be that apparently 

obligate anadromous populations were once facultatively anadromous, but subsequently 

evolved very high condition thresholds such that they no longer produce residents in that 

environment. This raises the intriguing possibility that residency, or other freshwater life 

histories, could re-emerge, as a result of changing environmental conditions at sea, in 

populations that are obligatively anadromous at present. 

The fact that genetic, environmental, and parental factors are inextricably, and complexly, 

linked in determining life history (Figure 3) means that they cannot be considered separately 

in either empirical or mathematical modelling studies. Not surprisingly where only specific 

aspects have been looked at in isolation, the findings are often inconsistent with other data. 

Significant genetic variance in traits, such as size, growth rate, metabolic rate, and age of 

smoltification, may in part explain the contradiction among studies regarding the role that 

these traits play in the life history decision (Dodson et al., 2013; Doctor et al., 2014; Hecht et 

al., 2015). Thus studies of condition and life history have often being carried out against 

variable genetic backgrounds where both intra-population and inter-population variability in 

the genetic propensity for life history occurs. It is generally well recognised that examining 

genetic differences between populations or other groups requires studies to be carried out in 

communal environmental conditions (common garden experiments), with reciprocal hybrids 

to control for parental effects. However, it seems less widely appreciated that investigating 

the influence of varying environments requires either common gene pool experiments or 

reciprocal transfers of pure and hybrid stocks among the environments being tested. 
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GENETIC AND ENVIRONMENTAL INFLUENCES ON OTHER COMPONENTS  

OF ANADROMY 

 

Once the decision to migrate has been made then several downstream consequential events 

occur. While there is clear evidence for both genetic and environmental influences on the 

anadromy decision, to what extent are the other components heritable and to what degree is 

variation in these the result of environmentally induced plasticity? Note, however, that these 

are not mutually exclusive alternatives as the degree of plasticity in given traits itself can be 

heritable. As with the decision to migrate, each of these components is also likely to involve 

interacting genetic and environmental factors. Furthermore, natural selection is likely to 

operate to maximise Darwinian fitness in each case. Thus these further components of 

anadromy may evolve under the action of selection and resultant, ‘more efficient’, anadromy 

may compensate for some of the costs involved in this life history as noted above. 

 

GENETIC CORRELATES OF SMOLTIFICATION 

 

Results from crosses between sympatric adfluvial kokanee and anadromous sockeye 

salmon (O. nerka (Walbaum)) indicated that there is a genetic basis for the propensity to 

undergo smolting (Foote et al., 1992). Hybrids between the two forms were intermediate in 

osmoregulatory ability in seawater, suggesting that the propensity for smoltification is the 

result of additive genetic variance at multiple genes. While the ecology and physiology of 

smoltification is well understood in salmonine fishes, relatively little was known of the 

genetic and molecular regulatory mechanisms underlying this process until recently. Two 

main molecular genomics approaches have been used to compare smolts and residents. The 

first comprises studies of gene expression, i.e. which genes are differentially active in the two 

life histories. The second involves determining genes or groups of genes (chromosome 

regions) that are correlated with life history through mapping quantitative trait loci (QTL) 

and genome wide association studies (GWAS). As emphasised above, while such studies are 

informative with regard to the genetic control of smoltification, they do not indicate why or 

how the smoltification is initiated in the first place, i.e. the decision to migrate. 

Giger et al., (2006) found shared differences in the genes expressed between smolts and 

resident brown trout from various European populations irrespective of their geographical 
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and phylogenetic background, thus indicating common genetic pathways related to 

smoltification. Subsequently, Giger et al., (2008) found that 21% of a random sample of 

screened genes were differentially expressed, which would suggest that many genes are 

involved in smoltification, or are indirectly affected by the process, in keeping with the 

genome wide distribution of gene associations found in later studies. Many other studies have 

shown gene expression differences, especially in the gills, between smolts and resident 

salmonines (e.g., Boulet et al., 2012; Robertson & McCormick, 2012; Garrett, 2013; Hecht et 

al., 2014; Sutherland et al., 2014). Genes that have been found to be differentially expressed 

relate, in most cases, to known physiological differences between smolts and residents, i.e., 

those associated with circadian rhythmicity, growth, osmoregulation, metabolism, protein 

breakdown, innate immunity, and sexual maturation. Differences in one of the genes, 

transaldolase 1, which is involved in lipid metabolism and is expressed at a lower level in 

smolts, can be detected over three months prior to migration (Amstutz et al., 2006). 

QTL and gene markers correlated with smoltification traits in rainbow trout have been 

found on many chromosomes, including Omy5 as outlined above and Omy12 (Nichols et al.,  

2008; Hecht et al., 2012, 2013; Hale et al., 2013; Pearse et al., 2014). In a QTL analysis of 

osmoregulatory capacity in resident rainbow trout, Le Bras et al., (2011) identified three QTL 

on Omy12 for traits associated with seawater adaptability. Hecht et al., (2012) found the 

largest number of smoltification QTL associated with Omy12. Similarly, Hecht et al., (2013) 

in a genome wide association study found associations between anadromy and this 

chromosome. Just as a gene region on Omy5 may act as a master switch for the life history 

decision so the genes on Omy12 may control smoltification in steelhead. 

 As noted above, one possible pathway through which environmentally induced 

phenotypic plasticity could be linked to variation in life history is epigenetic regulation 

determining which genes are expressed or silenced. One common mechanism for this is gene 

methylation, by which methyl groups are attached to the DNA preventing gene expression. 

Different genome-wide methylation patterns between hatchery freshwater controls and 

seawater transferred brown trout have been identified suggesting that epigenetic mechanisms 

may be involved, at least partially, in gene activation or deactivation during smoltification 

(Morán et al., 2013). Baerwald et al., (2015), using F2 siblings produced from a cross 

between steelhead and resident Sashin Creek rainbow trout reared in a common environment, 

detected 57 highly significant differentially methylated regions (DMRs) between smolts and 

resident juveniles. Many of the DMRs encode proteins with activity relevant to 
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smoltification, including circadian rhythms and protein kinase activity: an enzyme to which a 

multitude of functions have been attributed. 

 

INHERITED MIGRATION PATTERNS AND HOMING 

 

Juvenile steelhead, without prior migratory experience, responded to magnetic fields at the 

latitudinal boundaries of their ocean range with oriented swimming that would lead them 

towards appropriate foraging grounds (Putman et al., 2014a). Environmental factors could 

still play an important role if fish calibrate their responses relative to the local magnetic field 

in which they develop. Two Chinook salmon (Oncorhynchus tshawytscha (Walbaum)) 

populations and their hybrids reared under identical conditions differed in their oceanic 

distribution, and hybrids displayed an intermediate distribution relative to the two pure 

populations (Quinn et al., 2011). Subsequently Chinook salmon were shown to use an 

inherited magnetic map that facilitates navigation during their oceanic migration (Putman et 

al., 2014b). Similar mechanisms may exist for other salmonines; and there are many other 

examples of populations from the same river having different distributions at sea (e.g., 

Sharma & Quinn, 2012). 

Hatchery-reared sea trout from different populations showed distinct migration pathways 

when released from common sites in the Baltic (Svärdson & Fagerström, 1982; Kallio-

Nyberg et al., 2002) and natural sea trout populations differed in their distribution at sea 

(Jonsson & Jonsson, 2014b), indicating at least a partial genetic basis for their migratory 

behaviour. Jonsson & Jonsson (2014b) noted a higher straying rate of some hatchery reared 

stocks from populations distant to the river of release compared to more local stocks, which 

indicates that homing is partly inherited. 
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RETURN FROM SEA 

 

Little is known of the factors controlling the timing of sea trout return from the sea, an 

aspect showing considerable variation within and among populations (Quinn et al., 2016). 

Many Norwegian populations have been shown to overwinter in freshwater (Klemetsen et al., 

2003) and may simply be a direct physiological response to the greater difficulty of ionic 

regulation in cold water. Unlike Atlantic salmon, return to freshwater in sea trout is not 

necessarily accompanied by sexual maturation, a phenomenon also known in steelhead 

(Hodge et al., 2014), although this may be the driving force in many cases. It is not known if 

timing of maturation at sea is connected to the original freshwater mature or migrate decision 

or whether these are independent aspects of the anadromous life history. 

Timing of maturation in brown trout is a quantitative trait (Palm & Ryman, 1999). While 

age at sexual maturity in salmonines has a moderate heritability (Dodson et al., 2013), it is 

phenotypically plastic. In Atlantic salmon, a single genome region under natural selection has 

been associated with age of maturity (Ayllon et al., 2015; Barson et al., 2015). Interestingly 

one of the genes in this region has previously been found to be associated with the timing of 

puberty in humans, suggesting a conserved mechanism for timing of maturation in 

vertebrates. It would seem highly likely then that the same gene region may control time of 

maturity in brown trout. 

 

MANAGEMENT AND CONSERVATION IMPLICATIONS OF A GENETIC BASIS 

TO ANADROMY 

 

A strong genetic component to the anadromy decision in brown trout means the trait can 

be changed by (i.e. can evolve as a result of) natural selection. Due to the large heritabilities 

for growth, size and morphological traits, these characters also have substantial evolutionary 

potential (Hecht et al., 2015). However, the significant genetic correlation between traits, 

including life history, means that they do not evolve independently but as a suite of 

interlinked characters. This genetic covariance means that the response of life history to 

selection cannot be examined in isolation from these other traits (Hecht et al., 2015). 

Facultative anadromy is the result of a balance between the benefits and costs of life 

history traits and these are expected to vary spatially and temporally with changes in 

environmental conditions, including those imposed by anthropogenic actions and climate 

changes (Kendall et al., 2015). Environmental changes can result in: (1) a proximate effect 
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through changing individual condition and thus the likelihood of migration; and (2) ultimate 

evolutionary changes to the genetic make-up including the threshold for migration, as a 

consequence of changes in the relative reproductive success of anadromous and resident 

trout. For example, reduction in the number of spawning sea trout could have a direct impact 

on the extent of anadromy as well as an evolutionary one. Thus reduced spawning would 

result in an overall reduction in juvenile density, which, as discussed above, may favour 

residency. In the longer term a reduced benefit to anadromy will lower the threshold for 

residency. The main environmental and anthropogenic changes likely to result in genetic 

changes are outlined below. A full consideration of the topic would require a dedicated 

review (see, for example, Thorstad et al., 2016 for a fuller treatment). 

Negative changes to marine survival and feeding, and to survival and energy expenditure 

during migrations, will result in genetic changes in favour of residency (Hendry et al., 2004). 

Marine survival and, in some situations, growth may decline as the outcome of predicted 

climate changes resulting in changes in food availability (see below), increased predation 

(Friedland et al., 2012), and exploitation by commercial nets, either directly or as a by-

product of netting for other fishes, both of sea trout and their prey, as well as their predators. 

A major problem in some areas is infestations of sea lice (Lepeophtheirus salmonis) 

associated with Atlantic salmon farming, which have led to reduced marine survival and 

changes associated with migration, growth, physiology and reproduction (Skaala et al., 2014; 

Thorstad et al., 2015). Model projections by Satterthwaite et al., (2009) for steelhead suggest 

that when sea survival rates were reduced by some 50%, anadromy no longer occurred, 

although the extent of the reduction required was population specific (Satterthwaite et al., 

2010). Taranger et al.. (2015) noted that within 15 km of salmon farms in Norway sea lice 

levels are sufficiently high to result in 50% - 100% mortality of sea trout. Poole et al. (2006) 

found that in the Burrishoole system the mean return rate of smolts as finnock (.0SW 

maidens) in the years 1988-98 was one third of that prior to 1988, finnock being the 

predominant returning age class in this system. Sea lice emanating from salmon farms were 

implicated in this decline. It is not known whether the subsequent decline in sea trout smolts 

was the result of lower marine survival acting through natural selection to reduce anadromy 

or whether this decrease was the result of lowering of juvenile density due to depressed egg 

deposition. However, the fact that, even prior to the collapse, sea trout contributed less than 

20% of the total egg deposition in the system would suggest a heritable rather than a direct 

density-dependent response (Poole et al., 2006). 
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Conversely, if conditions in the natal river become completely inhospitable (e.g. high 

temperature, low flow, low food availability) at certain times of the year the resident life 

history will be eliminated (Satterthwaite et al., 2010). However, in simulations that varied 

growth and survival only, Railsback et al., (2014) showed that as a result of variation among 

habitats and individuals, the extent of anadromy within a population changed gradually 

instead of shifting abruptly. 

Changes in survival of both downstream and upstream migrants and in the energy costs of 

migration can occur for a number of reasons. Changes in water flow as a result of changes in 

precipitation and water abstraction can delay migration thus increasing the exposure to 

predators and energy expenditure. These effects can be increased by partial barriers to 

upstream migration due to water offtake and hydroelectric weirs. It should be emphasised that 

even where such barriers do not prevent upstream migration, they can increase the costs of 

facultative anadromy relative to residency. Sandlund & Jonsson (2016) reported that, 

following the construction of a hydroelectric power station and consequent reduced water 

flow, fluvial trout had ceased to migrate from a tributary to the main river due to reduced 

habitat quality in terms of food and shelter, which appeared to have removed the growth 

benefit previously associated with migration. 

In many rivers more angling attention is given to sea trout than resident trout resulting in 

greater exploitation of the former. Since sea trout produce relatively more eggs than 

residents, this differential exploitation is magnified. Thériault et al., (2008) present a 

theoretical model of how increased harvesting of anadromous of brook charr reduces the 

probability of migration. Since cessation of fishing pressure does not produce as strong 

selection pressures in the opposite direction, recovery is likely to take much longer (Conover, 

2000; Law, 2000). 

Predicted climate changes are likely to impact on life history choice. The expected climate 

change in Western Europe is for warmer conditions with increased rainfall resulting in 

greater river flows (Harrod et al., 2009). Temperature increase in the sea is predicted to 

reduce primary productivity (Piou & Prévost, 2012) and thus potentially reduce food 

availability for sea trout although the impact is likely to vary throughout the latitudinal range. 

Conversely, temperature increase may reduce the need for overwintering in freshwater in the 

more northern regions. As noted above, both temperature and flow rate impact on anadromy 

and thus changes in sea trout distribution and biological characteristics are likely to occur 

(reviewed by Jonsson & Jonsson, 2009). Warmer conditions and a longer feeding period, 
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together with freshwater enrichment, may increase freshwater growth rates with a consequent 

decrease in anadromy (Finstad & Hein, 2012). 

Stocking with fertile domesticated brown trout strains could result in a decrease in the 

genetic potential for anadromy in wild populations (Ferguson, 2007). Ruzzante et al., (2004) 

found that although domesticated trout, which had been stocked into rivers, produced smolts, 

these experienced high mortality at sea and were therefore largely absent in returning 

spawners. This suggests that genetic changes during domestication have reduced the ability to 

survive in the sea and the authors conclude that sea trout of domesticated origin are unlikely 

to reproduce to any significant extent. As discussed above, there is a genetic propensity for 

the ability to carry out ionic and osmoregulation at sea, which is independent of the actual 

seaward migration and the two aspects should not be confused. However, stocked 

domesticated brown trout that remain in freshwater have been shown to breed successfully 

(Hansen et al., 2000) and hence may lead to an increase in the proportion of freshwater trout 

relative to sea trout. Hatchery-produced steelhead smolts from residents above a barrier had 

substantially lower marine survival rates than similar smolts from the anadromous founder 

population below the barrier, indicating strong selection against aspects of anadromy in the 

above-barrier population over approximately 70 years (Thrower & Hard, 2009). The main 

farm strains of brown trout have been isolated from wild stocks for more than twice that time 

and were originally mainly derived from the adfluvial populations in Loch Leven, Scotland 

(Ferguson, 2007). An experimental study in Norway (Jonsson & Jonsson, 2014b) indicated 

that wild sea trout survived better than most hatchery produced trout, and that trout 

originating from populations distant to the river of release survived less well than those of 

local origin. 

Stocking with farm-reared brown trout, or the hatchery-reared offspring of non-native 

brown trout, also reduces the reproductive success of wild populations through interbreeding 

with the stocked fish (reviewed by Ferguson, 2007); which would reduce population density 

thus favouring residency. Stocking with domesticated strains of farmed brown trout, other 

than sterile triploids, in areas with self-sustaining populations is no longer permitted in 

England and Wales as of 2015 (Environment Agency, 2014) and will be phased out in 

Scotland by 2020 (Scottish Government, 2015). However, such stocking is still permitted in 

other jurisdictions. 

Stocking with hatchery-reared offspring of sea trout parents obtained from the same river 

as being stocked (supportive breeding) is widely practised in the countries surrounding the 

Baltic Sea. However, even if no genetic changes occur, hatchery-rearing can alter the 
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physiological condition of the trout thus changing their likelihood of migration (Davidsen et 

al., 2014b). In an experimental stocking programme, Marco-Rius et al., (2013) found that 

that planting artificially fertilized eggs in nursery areas of the river, together with the 

selection of anadromous males as brood stock, and mate pairs with higher similarity at the 

MHC class II Β-gene locus, increased the return of sea trout. 

 

FUTURE PERSPECTIVES 

 

Studies on the determinants of anadromy in brown trout, especially genetic aspects, lag 

substantially behind those on rainbow trout; although, even for the latter, Kendal et al., 

(2015) consider that available information has many limitations. However, given the 

considerable similarities of facultative anadromy in the two species, rainbow trout genetic 

studies can act as a springboard enabling rapid progress to be made in respect of brown trout. 

Key aspects which need to be tackled are those essential to understanding and enabling 

predictive modelling of the impact of changing environmental conditions on anadromy and 

how lost or depleted anadromous populations can be restored. Fundamental to this is the 

estimation of heritability of anadromy and relative Darwinian fitness of alternative life 

histories in a range of populations of different phylogeographic origins and biological 

characteristics (Ferguson, 2006). In particular, theory suggests that in order to predict 

changing selection on environmentally-cued threshold traits we need to be able to measure 

(a) the frequency distribution of cue (e.g. condition) values and how this is affected by 

environmental change, and (b) how the fitness of each tactic varies as a function of the cue 

(Tomkins & Hazel, 2007). Heritability estimates of the various factors (e.g. growth, 

metabolic rate, lipid storage) contributing to individual condition are also required together 

with the genetic covariance of these and anadromy. In addition, detailed investigation of the 

genetic factors controlling the life history decision is required. It is emphasised that such 

studies need to target early developmental stages, as this is when the ‘decision window(s)’ 

occurs, and not focus on smolts, which are a downstream consequence of the decision. This 

will require making use of experimental lines derived from above (resident) and below 

(anadromous) barrier populations together with innovative approaches to predict the future 

life histories of individual fish at an early developmental stage. 

Detailed studies of the influence of environmental factors on anadromy in brown trout are 

also required, including juvenile density, food availability, water temperature, water flow, 

and difficulty (cost) of migration. Variation in condition among populations as a result of 
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variation in these factors, and how individuals respond to this, requires examination. Similar 

recommendations in respect of rainbow trout have been advocated by Kendall et al., (2015) 

and that review should be consulted for a more detailed exposition. 

As there is clear evidence of a density dependent aspect to facultative anadromy it should 

be instructive to artificially manipulate juvenile densities. This could be done using eggs or 

fry of sterile triploid farm trout, which would obviate the potential problems of genetic 

changes due to interbreeding noted above (Ferguson, 2007). The aim of this stocking would 

not be for the stocked fish to produce sea trout themselves but to increase the juvenile trout 

density thus potentially ‘pushing’ the wild trout to migrate. 

Examination of issues affecting marine survival and growth is fundamental to full life 

cycle understanding. Experimental studies of environmental factors must be undertaken in the 

context of controlling for genetic variability as outlined above. Most studies to date of sea 

trout have been undertaken on a few river systems. However, there is requirement for 

investigation of relative frequency of life histories in a much larger number of rivers, together 

with detailed biotic and abiotic measurements and associated riverscape features. Detailed 

study is also required of the interaction between anadromous and the various freshwater life 

histories especially in view of the current understanding that these are interchangeable and do 

not have a rigid separation. 

Studies of parental influences on life history and epigenetic modifications can serve to 

elucidate how genetic and environmental influences interact. Although investigations of the 

inheritance of environmentally induced epigenetic modifications are at an early stage (Burton 

& Metcalfe, 2014), studies of such inheritance are likely to be fundamentally important in 

understanding life history choice, as well as the impact of environmental changes in general. 
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Table 1. Potential benefits of anadromy and river residency in brown trout. Based on 

information in: Gross et al., 1987; Elliott, 1994; Fleming, 1996, 1998; Jonsson & Jonsson, 

1999; Fleming & Reynolds, 2004; Hendry et al., 2004; Jonsson & Jonsson, 2006. Note that 

the benefits of one tactic can be regarded as the ‘costs’ of the other. 

 

Benefits of anadromy 

 Migration to more stable marine environment avoids harsh abiotic or biotic conditions 

in river. 

 Better feeding at sea than in rivers and thus faster growth, reaching larger size. 

 As growth occurs, larger food items such as fish become accessible, increasing 

growth further. 

 Larger size results in: 

o Being able to swim / hold position against higher current velocities; 

o Wider choice of spawning gravels, for females. 

o Better dominance in competition and female choice during mating, for males. 

o Eggs being buried deeper thereby reducing risk of washout and overcutting by 

smaller resident females. 

o Indirect effects to traits such as mortality rate, age at maturity, fecundity and 

egg mass. 

o Larger eggs, which produce larger offspring with better competitive ability 

and higher survival. 

Benefits of river residency 

 Higher survival due to: 

o Less risk of predation during migration and at sea. 

o Avoidance of parasites and diseases which are more abundant at sea. 

o Less chance of capture by humans. 

 Higher survival increases chance of iteroparity. 

 Avoids energetic costs of migration and physiological changes required for moving 

from freshwater to sea. 

 Able to gain access to spawning areas in small tributary rivers. 

 Avoids straying and being unable to find a suitable breeding site. 
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 If accompanied by earlier maturity than anadromy, residency yields reduced 

generation time (and all else being equal, ‘faster’ life histories outcompete ‘slower’ 

life histories). 
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Table 2. Non-mutually exclusive hypotheses to explain why balancing selection may 

maintain a mix of anadromous and resident tactics in a population, rather than only one.  

 

1. Ecological conditions vary across time 

Explanation: If the relative fitness of anadromous and resident individuals varies through 

time, temporally fluctuating selection may favour the capacity of individuals to produce 

either type via phenotypic plasticity (where individuals ‘choose’ their tactic based on cues) or 

bet-hedging (where tactics develop randomly). 

Examples: In some years, or for some cohorts, relative growth and survival benefits at sea 

may outweigh those in the river, but in other years, the reverse may be true. Thus, neither 

tactic outcompetes the other in the long-run.  

2. Ecological conditions vary across space 

Explanation: If the relative fitness of anadromous and resident tactics varies across habitat 

types within a single freely interbreeding population, this may select for individuals that are 

capable of producing either tactic (via plasticity or bet-hedging) 

Examples: Fry that rear in more productive parts of the river, or that obtain better feeding 

territories, may be better off remaining resident and maturing early, whereas fry that rear in 

lower-energy environments may gain more by becoming anadromous.  Smaller tributaries or 

spawning areas with smaller gravels may select for smaller resident females, whereas larger 

tributaries or areas with larger gravels may favour larger anadromous females (if going to 

sea is the only way to get big). A relatively small amount of gene flow among 

habitats/tributaries within rivers will still be enough to prevent genetic differentiation.  

3. Frequency dependence favours a stable mix of tactics 

Explanation: Smaller resident males may ‘sneak’ more fertilisations when rare, whereas 

larger anadromous males may obtain more fertilisations on average when small resident 

males are most abundant. This mechanism can act to stabilise tactic frequencies at some 

intermediate value or, in theory, could lead to constant cycling of tactic frequencies. 

Examples: Early maturing resident males have a spawning advantage relative to anadromous 

males only when rare. 

4. Sexually-antagonistic selection maintains genetic variation in anadromy 

Explanation: The evolutionary interests of males and females may be in conflict, such that 

genes that increase the propensity for anadromy are selected for in females but against in 

males. This then maintains genetic variation in the propensity for anadromy.  
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Examples: Females carrying genes for higher condition-thresholds are more likely to be 

anadromous, which increases their reproductive success, but their sons may then inherit 

these same genes and hence also become anadromous, which may be less optimal for males 

than residency. Such ‘sexual conflict’ may mean that neither tactic has superior fitness 

overall (averaged across males and females), hence both co-exist. 

5. Heterozygote advantage favours the maintenance of genetic variation in anadromy 

Explanation: For a given genetic locus affecting the propensity for anadromy, two or more 

alleles (different copies of the same gene) can be maintained in the population if 

heterozygotes (individuals with two different copies) have higher fitness than homozygotes 

(individuals with two identical copies).  

Example: Heterozygous parents may produce a mix of anadromous and resident offspring, 

whereas homozygous parents might produce more of one type than the other. If selection on 

average favours some intermediate threshold for anadromy, heterozygotes may have a long-

term fitness advantage over homozygotes. This mechanism could partially explain why 

genetic variation in anadromy thresholds is maintained, but by itself does not explain why an 

intermediate degree of anadromy is favoured (although the other hypotheses might). 
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Figure 1. Illustration of how the genetically determined condition threshold can determine 

the life history adopted. The y-axis here represents some measure of physiological condition 

that triggers residency when it exceeds the hypothesised genetic threshold, or anadromy if 

not. 
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Figure 2. Possible distributions of condition threshold values in males (A) and females (B), 

or two populations with lower (A) and higher (B) propensities for anadromy. A single point 

along the x-axis here corresponds to a single threshold value, e.g. the dashed line in Fig.1. 
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Figure 3. Summary of how genetic, environmental and parental factors could interact to 

determine the life history and how evolutionary changes to life history could result from 

environmental changes that alter the relative reproductive success of the two tactics. 

 

 


