50 research outputs found

    A simple model to assess the impact of gravity waves on ice-crystal populations in the tropical tropopause layer

    Get PDF
    The role of gravity waves on microphysics of tropical cirrus clouds and air-parcel dehydration was studied using the combination of Lagrangian observations of temperature fluctuations and a 1.5D model. High-frequency measurements during isopycnal balloon flights were used to resolve the gravity-wave signals with periods ranging from a few days to 10 min. The detailed microphysical simulations with homogeneous freezing, sedimentation, and a crude horizontal mixing represent the slow ascent of air parcels in the tropical tropopause layer (TTL). A reference simulation describes the slow ascent of air parcels in the tropical tropopause layer, with nucleation occurring only below the cold-point tropopause with a small ice-crystal density. The inclusion of the gravity waves drastically modifies the vertical profile of low ice concentration and weak dehydration found during the ascent alone, with the increased ice-crystal number and size distribution agreeing better with observations. Numerous events of nucleation occur below and above the cold-point tropopause, efficiently restoring the relative humidity over ice to equilibrium with respect to the background temperature, as well as increasing the cloud fraction in the vicinity of the cold-point tropopause. The corresponding decrease in water vapor is estimated at 2 ppmv around the cold-point tropopause.</p

    Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer

    Get PDF
    The impact of high-frequency fluctuations of temperature on homogeneous nucleation of ice crystals in the vicinity of the tropical tropopause is investigated using a bin microphysics scheme for air parcels. The imposed temperature fluctuations come from measurements during isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency, guaranteeing that gravity wave signals are well resolved.With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentration (INC) as previously observed in the tropical upper troposphere. In particular, a low INC may be obtained if the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This work suggests that homogeneous ice nucleation is not necessarily inconsistent with observations of low INCs.</p

    Radiative impacts of the Australian bushfires 2019–2020 – Part 2: Large-scale and in-vortex radiative heating

    Get PDF
    Record-breaking wildfires ravaged south-eastern Australia during the fire season 2019–2020. The intensity of the fires reached its paroxysmal phase at the turn of the year 2019–2020, when large pyro-cumulonimbi developed. Pyro-convective activity injected biomass burning aerosols and gases in the upper-troposphere–lower-stratosphere (UTLS), producing a long-lasting perturbation to the atmospheric composition and the stratospheric aerosol layer. The large absorptivity of the biomass burning plume produced self-lofting of the plume and thus modified its vertical dynamics and horizontal dispersion. Another effect of the in-plume absorption was the generation of compact smoke-charged anticyclonic vortices which ascended up to 35 km altitude due to diabatic heating. We use observational and modelling description of this event to isolate the main vortex from the dominant Southern Hemispheric biomass burning aerosol plume. Entering this information into an offline radiative transfer model, and with hypotheses on the absorptivity and the angular scattering properties of the aerosol layer, we estimate the radiative heating rates (HRs) in the plume and the vortex. We found that the hemispheric-scale plume produced a HR of 0.08±0.05 K d−1 (from 0.01 to 0.15 K d−1, depending on the assumption on the aerosol optical properties), as a monthly average value for February 2020, which is strongly dependent on the assumptions on the aerosol optical properties and therefore on the plume ageing. We also found in-vortex HRs as large as 15–20 K d−1 in the denser sections of the main vortex (8.4±6.1 K d−1 on average in the vortex). Our results suggest that radiatively heated ascending isolated vortices are likely dominated by small-sized strongly absorbing black carbon particles. The hemispheric-scale and in-vortex HR estimates are consistent with the observed ensemble self-lofting (a few kilometres in 4 months) and the main isolated vortex rise (∌ 20 km in 2 months). Our results also show evidence of the importance of longwave emission in the net HR of biomass burning plumes.</p

    Impact of gravity waves on the motion and distribution of atmospheric ice particles

    Get PDF
    International audienceGravity waves are an ubiquitous feature of the atmosphere and influence clouds in multiple ways. Regarding cirrus clouds, many studies have emphasized the impact of wave-induced temperature fluctuations on the nucleation of ice crystals. This paper investigates the impact of the waves on the motion and distribution of ice particles, using the idealized 2-D framework of a monochromatic gravity wave. Contrary to previous studies, special attention is given to the impact of the wind field induced by the wave. Assuming no feedback of the ice on the water vapor content, theoretical and numerical analyses both show the existence of a wave-driven localization of ice crystals, where some ice particles remain confined in a specific phase of the wave. The precise location where the confinement occurs depends on the background relative humidity, but it is always characterized by a relative humidity near saturation and a positive vertical wind anomaly. Hence, the wave has an impact on the mean motion of the crystals and may reduce dehydration in cirrus by slowing down the sedimentation of the ice particles. The results also provide a new insight into the relation between relative humidity and ice crystals' presence. The wave-driven localization is consistent with temperature-cirrus relationships recently observed in the tropical tropopause layer (TTL) over the Pacific during the Airborne Tropical Tropopause EXperiment (ATTREX). It is argued that this effect may explain such observations. Finally, the impact of the described interaction on TTL cirrus dehydration efficiency is quantified using ATTREX observations of clouds and temperature lapse rate

    A Stochastic Representation of Temperature Fluctuations Induced by Mesoscale Gravity Waves

    Get PDF
    Ubiquitous mesoscale gravity waves generate high cooling rates important for cirrus formation. We make use of long-duration balloon observations to devise a probabilistic model describing mesoscale temperature uctuations (MTF) away from strong wave sources. We define background conditions based on observed probability distributions of temperature and underlying vertical wind speed fluctuations. We show theoretically that MTF are subject to damping at a rate near the Coriolis frequency when the vertical wind speed fluctuations are autocorrelated over a fraction of a Brunt-VĂ€isĂ€lĂ€ period. We find that for background wave activity, a decrease in temperature of 1K translates into cooling rate standard deviations and mean updraft speeds of 4–8Kh−1 and ≈ 10–20 cms−1, respectively, depending on latitude and stratification. We introduce an effective Coriolis frequency to generate cooling rates in equatorial regions consistent with balloon data. Above ice saturation, MTF are large enough to affect ice crystal nucleation. Our results help constrain uncertainty in aerosol-cirrus interactions, provide insights to better meet challenges in comparing measurement data with model simulations, and support the development of cutting-edge ice cloud schemes in global models

    A modelling case study of a large-scale cirrus in the tropical tropopause layer

    Get PDF
    We use the Weather Research and Forecast (WRF) model to simulate a large-scale tropical tropopause layer (TTL) cirrus in order to understand the formation and life cycle of the cloud. This cirrus event has been previously described through satellite observations by Taylor et al. (2011). Comparisons of the simulated and observed cirrus show a fair agreement and validate the reference simulation regarding cloud extension, location and life time. The validated simulation is used to understand the causes of cloud formation. It is shown that several cirrus clouds successively form in the region due to adiabatic cooling and large-scale uplift rather than from convective anvils. The structure of the uplift is tied to the equatorial response (equatorial wave excitation) to a potential vorticity intrusion from the midlatitudes. <br><br> Sensitivity tests are then performed to assess the relative importance of the choice of the microphysics parameterization and of the initial and boundary conditions. The initial dynamical conditions (wind and temperature) essentially control the horizontal location and area of the cloud. However, the choice of the microphysics scheme influences the ice water content and the cloud vertical position. <br><br> Last, the fair agreement with the observations allows to estimate the cloud impact in the TTL in the simulations. The cirrus clouds have a small but not negligible impact on the radiative budget of the local TTL. However, for this particular case, the cloud radiative heating does not significantly influence the simulated dynamics. This result is due to (1) the lifetime of air parcels in the cloud system, which is too short to significantly influence the dynamics, and (2) the fact that induced vertical motions would be comparable to or smaller than the typical mesoscale motions present. Finally, the simulation also provides an estimate of the vertical redistribution of water by the cloud and the results emphasize the importance in our case of both rehydration and dehydration in the vicinity of the cirrus

    Seasonal and Latitudinal Variability of the Gravity Wave Spectrum in the Lower Stratosphere

    No full text
    International audienceSuperpressure balloon data of unprecedented coverage from Loon LLC is used to investigate the seasonal and latitudinal variability of lower stratospheric gravity waves over the entire intrinsic frequency spectrum. We show that seasonal variability in both gravity wave amplitudes and spectral slopes exist for a wide range of intrinsic frequencies and provide estimates of spectral slopes in five latitudinal regions for all four seasons, in five different frequency windows. The spectral slopes can be used to infer gravity wave amplitudes of intrinsic frequencies as high as 70 cycles/day from gravity waves resolved in model and reanalysis data. We also show that a robust relationship between the phase of the quasi-biennial oscillation and gravity wave amplitudes exists for intrinsic frequencies as high as the buoyancy frequency. These are the first estimates of seasonal and latitudinal variability of gravity wave spectral slopes and high-frequency amplitudes and constitute a significant step toward obtaining observationally constrained gravity wave parameterizations in climate models

    Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer

    No full text
    The impact of high-frequency fluctuations of temperature on homogeneous nucleation of ice crystals in the vicinity of the tropical tropopause is investigated using a bin microphysics scheme for air parcels. The imposed temperature fluctuations come from measurements during isopycnic balloon flights near the tropical tropopause. The balloons collected data at high frequency, guaranteeing that gravity wave signals are well resolved.<br><br>With the observed temperature time series, the numerical simulations with homogeneous freezing show a full range of ice number concentration (INC) as previously observed in the tropical upper troposphere. In particular, a low INC may be obtained if the gravity wave perturbations produce a non-persistent cooling rate (even with large magnitude) such that the absolute change in temperature remains small during nucleation. This result is explained analytically by a dependence of the INC on the absolute drop in temperature (and not on the cooling rate). This work suggests that homogeneous ice nucleation is <span style="" class="text italic">not</span> necessarily inconsistent with observations of low INCs.</p
    corecore