115 research outputs found

    Caractérisation du transporteur de nitrate à double affinité, MtNPF6.8 (MtNRT1.3), de Medicago truncatula : rôles dans le transport et la perception du signal nitrate

    Get PDF
    Nitrate, a major nitrogen source for most plants, is not only a nutrient but also a signaling molecule. However, there are contrasting responses to nitrate between different higher plants. In the model legume Medicago truncatula, nitrate has an inhibitory effect on the primary root growth in post-germination phase. A quantitative genetic study has shown that a nitrate transporter is localized at the peak of a QTL involved in the primary root growth. Functional characterization of the transporter, named MtNRT1.3 and renamed MtNPF6.8, showed that it encodes a dual affinity nitrate transporter. MtNPF6.8 is likely to participate in the nitrate influx in the plant. After obtaining three knockdown lines by RNA interference, experiments using K15NO3 showed that this transporter is effect involved in nitrate influx related to the inducible low affinity transport system (iLATS). However, mutation in MtNPF6.8 does not any effect on nitrogen metabolism. In addition, studies on the primary root growth have confirmed the involvement of the transporter on phenotypic trait. In wild-type plants, cortical cell size decreased after nitrate treatment, showing that primary root growth was due to this reduced cell elongation. The possibility that ABA also plays a role in mediating this nitrate dependent response is heavily favored. All these results, reinforced by a study of mutants expressing this transporter in A. thaliana, indicate that MtNPF6.8 is a nitrate sensor for Medicago in the post-germination phase, independently of its nitrate transport activity

    Práticas de manejo de pragas utilizadas na soja e seu impacto sobre a cultura.

    Get PDF
    bitstream/item/30358/1/correa-ferreira.ct78.pd

    Nitrate transporters : an overview in legumes

    Get PDF
    Main conclusion The nitrate transporters, belonging to NPF and NRT2 families, play critical roles in nitrate signaling, root growth and nodule development in legumes. Nitrate plays an essential role during plant development as nutrient and also as signal molecule, in both cases working via the activity of nitrate transporters. To date, few studies on NRT2 or NPF nitrate transporters in legumes have been reported, and most of those concern Lotus japonicus and Medicago truncatula. A molecular characterization led to the identification of 4 putative LjNRT2 and 37 putative LjNPF gene sequences in L. japonicus. In M. truncatula, the NRT2 family is composed of 3 putative members. Using the new genome annotation of M. truncatula (Mt4.0), we identified, for this review, 97 putative MtNPF sequences, including 32 new sequences relative to previous studies. Functional characterization has been published for only two MtNPF genes, encoding nitrate transporters of M. truncatula. Both transporters have a role in root system development via abscisic acid signaling: MtNPF6.8 acts as a nitrate sensor during the cell elongation of the primary root, while MtNPF1.7 contributes to the cellular organization of the root tip and nodule formation. An in silico expression study of MtNPF genes confirmed that NPF genes are expressed in nodules, as previously shown for L. japonicus, suggesting a role for the corresponding proteins in nitrate transport, or signal perception in nodules. This review summarizes our knowledge of legume nitrate transporters and discusses new roles for these proteins based on recent discoveries

    c-MET Protects Breast Cancer Cells from Apoptosis Induced by Sodium Butyrate

    Get PDF
    Sodium Butyrate (NaBu) is regarded as a potential reagent for cancer therapy. In this study, a specific breast cancer cell population that is resistant NaBu treatment was identified. These cells possess cancer stem cell characters, such as the capability of sphere formation in vitro and high tumor incident rate (85%) in mouse model. Forty percent of the NaBu resistant cells express the cancer stem cells marker, the CD133, whereas only 10% intact cells present the CD133 antigen. Furthermore, the endogenous expressing c-MET contributes to the survival of cancer stem cell population from the treatment of NaBu. The CD133+ group also presents a higher level of c-MET. A combination treatment of MET siRNA and NaBu efficiently prohibited the breast cancer progression, and the incident rate of the tumor decrease to 18%. This study may help to develop a new and alternative strategy for breast cancer therapy

    Application of simulation modeling for wildfire exposure and transmission assessment in Sardinia, Italy

    Get PDF
    Abstract The development of comprehensive fire management and risk assessment strategies is of prominent concern in Southern Europe, due to the expanding scale of wildfire risk. In this work, we applied simulation modeling to analyze fine-scale (100-m resolution) wildfire exposure and risk transmission in the 24,000 km2 island of Sardinia (Italy). Sardinia contains a variety of ecological, cultural, anthropic and touristic resources that each summer are threatened by wildfires, and represents well the Mediterranean Basin environments and conditions. Wildfire simulations based on the minimum travel time algorithm were used to characterize wildfire exposure and risk transmission in terms of annual burn probability, flame length, structures exposed and type and amount of transmission. We focused on the historical conditions associated with large (>50 ha) and very large (>200 ha) wildfires that occurred in Sardinia in the period 1998–2016, and combined outputs from wildfire simulation modeling with land uses, building footprint locations, weather, and historical ignition data. The outputs were summarized for weather zones, main wind scenarios and land uses. Our study characterized spatial variations in wildfire spread, exposure and risk transmission among and within weather zones and the main winds associated with large events. This work provides a novel quantitative approach to inform wildfire risk management and planning in Mediterranean areas. The proposed methodology can serve as reference for wildfire risk assessment and can be replicated elsewhere. Findings can be used to better understand the spatial dynamics and patterns of wildfire risk and evaluate expected wildfire behavior or transmission potential in Sardinia and neighboring regions

    Harmonized dataset of surface fuels under Alpine, temperate and Mediterranean conditions in Italy. A synthesis supporting fire management

    Get PDF
    Surface biomass characterization plays a key role in wildfire management. It allows classifying vegetation fuels flammability for fire risk analysis, to define silvicultural prescriptions for fire hazard reduction, to plan prescribed burning, or to model fire behavior and its effects, such as greenhouse gas and pollutant emissions. To facilitate fuel classification and analysis of potential fire behavior and effects in Italy, we harmonized 634 measurements of surface wildland fuels from Alpine, temperate and Mediterranean environments. The dataset provides quantitative data for duff, fine dead fuels and downed woody material, live grasses and shrubs fuel components. Surface fuel data were harmonized by subdividing loads (Mg ha(-1)) to standard size classes for dead (0-6, 6-25 and 25-75 mm) and live (0-6, 6-25 mm) fuels, collecting percent cover and depth/height (cm) of the various fuel components, and classifying observations into 19 fuelbed categories. To ensure comparability with existing vegetation classification systems, we classified each observation according to the European Fuel Map, the Corine Land Cover classes (level IV), the European Forest Types, and the forest categories of the Italian National Forest Inventory. The dataset and a photo description of each fuelbed category are available as Supplementary material. This dataset is the first step to develop several products at the national scale such as: (i) fuel type classification and mapping; (ii) carbon stock and wildfire emission estimates; (iii) calibration of fuel models for the simulation of fire behavior and effects

    Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume Medicago truncatula

    Get PDF
    Primary root growth in the absence or presence of exogenous NO(3)(-) was studied by a quantitative genetic approach in a recombinant inbred line (RIL) population of Medicago truncatula. A quantitative trait locus (QTL) on chromosome 5 appeared to be particularly relevant because it was seen in both N-free medium (LOD score 5.7; R(2)=13.7) and medium supplied with NO(3)(-) (LOD score, 9.5; R(2)=21.1) which indicates that it would be independent of the general nutritional status. Due to its localization exactly at the peak of this QTL, the putative NRT1-NO(3)(-) transporter (Medtr5g093170.1), closely related to Arabidopsis AtNRT1.3, a putative low-affinity nitrate transporter, appeared to be a significant candidate involved in the control of primary root growth and NO(3)(-) sensing. Functional characterization in Xenopus oocytes using both electrophysiological and (15)NO(3)(-) uptake approaches showed that Medtr5g093170.1, named MtNRT1.3, encodes a dual-affinity NO(3)(-) transporter similar to the AtNRT1.1 \u27transceptor\u27 in Arabidopsis. MtNRT1.3 expression is developmentally regulated in roots, with increasing expression after completion of germination in N-free medium. In contrast to members of the NRT1 superfamily characterized so far, MtNRT1.3 is environmentally up-regulated by the absence of NO(3)(-) and down-regulated by the addition of the ion to the roots. Split-root experiments showed that the increased expression stimulated by the absence of NO(3)(-) was not the result of a systemic signalling of plant N status. The results suggest that MtNRT1.3 is involved in the response to N limitation, which increases the ability of the plant to acquire NO(3)(-) under N-limiting conditions
    corecore