93 research outputs found

    Visuomotor Adaptation Without Vision?

    Get PDF
    In 1995, an aftereffect following treadmill running was described, in which people would inadvertently advance when attempting to run in place on solid ground with their eyes closed. Although originally induced from treadmill running, the running-in-place aftereffect is argued here to result from the absence of sensory information specifying advancement during running. In a series of experiments in which visual information was systematically manipulated, aftereffect strength (AE), measured as the proportional increase (post-test/pre-test) in forward drift while attempting to run in place with eyes closed, was found to be inversely related to the amount of geometrically correct optical flow provided during induction. In particular, experiment 1 (n=20) demonstrated that the same aftereffect was not limited to treadmill running, but could also be strongly generated by running behind a golf-cart when the eyes were closed (AE=1.93), but not when the eyes were open (AE=1.16). Conversely, experiment 2 (n=39) showed that simulating an expanding flow field, albeit crudely, during treadmill running was insufficient to eliminate the aftereffect. Reducing ambient auditory information by means of earplugs increased the total distances inadvertently advanced while attempting to run in one place by a factor of two, both before and after adaptation, but did not influence the ratio of change produced by adaptation. It is concluded that the running-in-place aftereffect may result from a recalibration of visuomotor control systems that takes place even in the absence of visual input

    Neural noise distorts perceived motion: the special case of the freezing illusion and the Pavard and Berthoz effect

    Get PDF
    When a slowly moving pattern is presented on a monitor which itself is moved, the pattern appears to freeze on the screen (Mesland and Wertheim in Vis Res 36(20):3325–3328, 1996) even if we move our head with the monitor, as with a head mounted display (Pavard and Berthoz in Perception 6:529–540, 1977). We present a simple model of these phenomena, which states that the perceived relative velocity between two stimuli (the pattern and the moving monitor) is proportional to the difference between the perceived velocities of these stimuli in space, minus a noise factor. The latter reflects the intrinsic noise in the neural signals that encode retinal image velocities. With noise levels derived from the literature the model fits empirical data well and also predicts strong distortions of visually perceived motion during vestibular stimulation, thus explaining both illusions as resulting from the same mechanism

    Treadmill Experience Alters Treadmill Effects on Perceived Visual Motion

    Get PDF
    Information on ongoing body movements can affect the perception of ambiguous visual motion. Previous studies on “treadmill capture” have shown that treadmill walking biases the perception of ambiguous apparent motion in backward direction in accordance with the optic flow during normal walking, and that long-term treadmill experience changes the effect of treadmill capture. To understand the underlying mechanisms for these phenomena, we conducted Experiment 1 with non-treadmill runners and Experiment 2 with treadmill runners. The participants judged the motion direction of the apparent motion stimuli of horizontal gratings in front of their feet under three conditions: walking on a treadmill, standing on a treadmill, and standing on the floor. The non-treadmill runners showed the presence of downward bias only under the walking condition, indicating that ongoing treadmill walking but not the awareness of being on a treadmill biased the visual directional discrimination. In contrast, the treadmill runners showed no downward bias under any of the conditions, indicating that neither ongoing activity nor the awareness of spatial context produced perception bias. This suggests that the long-term repetitive experience of treadmill walking without optic flow induced the formation of a treadmill-specific locomotor-visual linkage to perceive the complex relationship between self and the environment

    High toxicity and specificity of the saponin 3-GlcA-28-AraRhaxyl-medicagenate, from Medicago truncatula seeds, for Sitophilus oryzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of the increasingly concern of consumers and public policy about problems for environment and for public health due to chemical pesticides, the search for molecules more safe is currently of great importance. Particularly, plants are able to fight the pathogens as insects, bacteria or fungi; so that plants could represent a valuable source of new molecules.</p> <p>Results</p> <p>It was observed that <it>Medicago truncatul</it>a seed flour displayed a strong toxic activity towards the adults of the rice weevil <it>Sitophilus oryzae</it> (Coleoptera), a major pest of stored cereals. The molecule responsible for toxicity was purified, by solvent extraction and HPLC, and identified as a saponin, namely 3-GlcA-28-AraRhaxyl-medicagenate. Saponins are detergents, and the CMC of this molecule was found to be 0.65 mg per mL. Neither the worm <it>Caenorhabditis elegans</it> nor the bacteria <it>E. coli</it> were found to be sensitive to this saponin, but growth of the yeast <it>Saccharomyces cerevisiae</it> was inhibited at concentrations higher than 100 μg per mL. The purified molecule is toxic for the adults of the rice weevils at concentrations down to 100 μg per g of food, but this does not apply to the others insects tested, including the coleopteran <it>Tribolium castaneum</it> and the Sf9 insect cultured cells.</p> <p>Conclusions</p> <p>This specificity for the weevil led us to investigate this saponin potential for pest control and to propose the hypothesis that this saponin has a specific mode of action, rather than acting <it>via</it> its non-specific detergent properties.</p

    Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis

    Full text link

    Tissue culture of ornamental cacti

    Get PDF
    Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family

    The detection of digitisation in visual images

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D063963 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore