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Fibrils from the Parkinson’s-disease-related A53T mutant of a-synuclein
were investigated by solid-state NMR spectroscopy, electron microscopy,
and atomic force microscopy. Sequential solid-state NMR resonance assign-
ments were obtained for a large fraction of the fibril core. Experiments
conducted above and below the freezing point suggest that the fibrils contain
regions with increased mobility and structural elements different from -
strand character, in addition to the rigid B-sheet-rich core region. As in
earlier studies on wild-type a-synuclein, the C-terminus was found to be
flexible and unfolded, whereas the main core region was highly rigid and
rich in R-sheets. Compared to fibrils from wild-type a-synuclein, the well-
ordered p-sheet region extends to at least L38 and L100. These results
demonstrate that a disease-related mutant of a-synuclein differs in both
aggregation kinetics and fibril structure.

© 2008 Elsevier Ltd. All rights reserved.
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Parkinson’s disease, the most common neurode-
generative movement disorder, is caused by loss of
dopaminergic neurons in the substantia nigra, accom-
panied by formation of cytosolic filamentous inclu-
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sions called Lewy bodies." The major constltuent of
these inclusions consists of fibrillar a—synuclem a 140-
residue protein that, in its native conformation, is largely
unfolded. The central role of a-synuclein aggregation
in the etiology of Parkinson’s disease has been further
corroborated by the identification of a locus triplica-
tion of the gene encoding a- Zynuclem as well as the
three point mutations A53T,"> A30P,° and F46K,” as
cause of autosomal dominant Parkinson’s disease.
While dopaminergic nerve cell loss clearly is linked to
enhanced a-synuclein aggregation, it is still unclear
whether mature amyloid fibrils or oligomeric 1r1ter—
mediates are the toxic agents that lead to cell death.®
Since their discovery, the three disease-related mu-
tants have been the subject of intense study, as
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differences in aggregation behavior and morphology
with respect to the wild-type form may yield valua-
ble insights into the fundamental processes under-
lying amyloidogenic diseases.” ' As in the case of
wild-type a-synuclein, all three mutants are natively
unfolded, although the propensities for residual
secondary structure around the mutation sites are
slightly altered.'”'**° In comparison with the wild-
type form, significant acceleration of fibrillization
has been observed for the mutants A53T"'%'>!” and
E46K,'*'®? whereas contradicting observations
regarding oligomerization and aggregation kinetics
have been reported for the A30P mutant.'”"""'® The
morphology of in vitro aggregates of wild-type a-
synuclein and its familial mutants has also been
studied intensively by atomic force microscopy
(AFM) and electron microscopy (EM).!12.16:19
Whereas fibrils of the mutant form A30P have an
appearance similar to that of wild-type a-synuclein,
fibrils from the mutants A53T and E46K are more
twisted. However, the overall morphology of amy-
loid fibrils, in general, depends strongly on fibrilliza-
tion conditions, including pH, temperature, salt
concentration, and agitation of the solution.”* Upon
fibrillization of wild-type a-synuclein at physiologi-
cal temperature and pH, at least two different
polymorphic forms—one consisting of straight
fibrils and the other consisting of irregularly twisted
fibrils—have been obtained and characterized.”

A more detailed picture of the molecular arrange-
ment within the fibril can be obtained by solid-state
magic angle spinning (MAS) NMR spectroscopy,
which has emerged as a powerful tool for structure
elucidation in amyloid fibrils (for recent reviews,
see, e.g., Tycko®* and Heise® and references cited
therein). Studies of wild-type a-synuclein have
revealed a B-sheet-rich core region spanning resi-
dues from at least 38 to 94 for the two different
polymorphic isoforms, whereas the C-terminus was
flexible and unfolded in both cases.”® Our structural
findings were largely confirmed by other solid-state
NMR (ssNMR) data reported recently,”**” although
significant spectral changes that could indicate the
existence of a yet third isoform were apparent.
While ssNMR spectra of fibrils from the A30P
mutant exhibit differences with respect to wild-
type a-synuclein,” concrete structural insights into
the effects of protein mutation on fibril formation are
as yet very limited. In the following, we report studies
on fibrils grown from the disease-related A53T
mutant of a-synuclein by ssNMR, EM, and AFM.

Sample preparation and
characterization by EM and AFM

The A53T mutant of a-synuclein was expressed
recombinantly in Escherichia coli cultures as described
before.” The protein was labeled uniformly with '°C
and "N isotopes in all amino acid residues except
lysine—a condition achieved by using minimal
medium containing *Cs-glucose, "N ammonium

chloride, and 100 mg/I non-isotope-labeled lysine for
expression.

Fibrils were prepared from a solution with a
protein concentration of ~250 uM in 25 mM Tris—
HCI buffer (pH 7.5, at 25 °C) and 0.02% NaNs.
Fibrillization was achieved by incubation at 37 °C
for 7 days, as described before.” The time course of
aggregation was monitored by standard thioflavin T
fluorescence assay (Supplementary Information,
Fig. SI1).” Fibrils were isolated by three consecutive
cycles of centrifugation (10° g) and resuspension in
Tris—-HCl bulffer.

In Fig. 1, EM and AFM pictures of fibrils grown
from the full-length A53T mutant of a-synuclein are
shown. The sample displayed long fibrils with a
diameter of 160 A, presumably composed of two
protofilaments with a diameter of 80 A. The majority
of the fibrils had a straight appearance.

ssNMR spectra and resonance assignments

Sequential resonance assignments for A53T a-
synuclein were made based on interresidue cross-
correlations in two-dimensional spin diffusion
spectra recorded under weak coupling conditions™
and from comparison of heteronuclear nitrogen-
carbon correlation spectra (NCACX and NCOCX)
(Supplementary Information, Fig. SI2).>' Unam-
biguous sequential resonance assignments from

1000 nm

200 nm

Fig.1. EM (a) and AFM (b) images of A53T a-synuclein
fibrillized at 37 °C. For EM measurements, amyloid fibrils,
which were resuspended from the pellet, were prepared
on a glow-discharged carbon foil and stained with 1%
uranyl acetate. The sample was evaluated with a CM 120
Phillips TEM. Pictures were taken with a 2048 x 2048 Tietz
TemCam 224A camera in spot mode at a magnification of
195,000% at —1.15 pm defocus. For the AFM image, a 5- to
10-pl drop of a dilute aqueous amyloid solution was spin-
coated to dryness on a freshly cleaved mica surface. A
Digital Instruments (Veeco) MultiMode scanning probe
microscope Illa was used. The sample was imaged in air at
a 1-Hz scan rate using silicon tips.
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both types of correlation spectra could be obtained
for the amino acids from two stretches comprising
residues V63-G73 and T81-A90. Furthermore, pair-
wise sequential assignments were obtained for G36-
Y39, G41/542, A56/E57, E61/Q62, A91-F94, and
D98-G101 from either homonuclear or heteronuc-
lear correlations (HETCORs) alone (Supplementary
Information).

In hydrated amyloid fibrils, different regions of a
protein may exhibit diverse residual mobility.*>*?
Therefore, ssNMR spectra based on dipolar transfer
mechanisms often show only a subset of all reso-
nances in the protein. Freezing the sample reduces
the overall mobility such that flexible parts may give
rise to more or less inhomogeneously broadened
signals, depending on the degree of disorder.
Alternatively, flexible regions can selectively be
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detected by applying adequate mobility filters in
the MAS NMR experiments.?3253334

Figure 2a shows two '*C/">C correlation spectra
recorded at different temperatures. Sample tem-
peratures under different cooling conditions at
different MAS speeds were calibrated externally
with an accuracy of +5 °C by the temperature-
dependent paramagnetic 'H chemical shift of nick-
elocene, as described previously.”” In addition,
sample freezing was observed by a drastic change
in the probehead 'H tuning around a temperature of
—10 °C and by a significant line broadening of 'H
water resonance. The first spectrum was recorded at
~0 °C (i.e., slightly above the freezing point), while
the second spectrum was obtained under similar
conditions but at an effective sample temperature of
approximately —20 °C (i.e., well below the sample
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Fig. 2. (a) Two-dimensional *C/"C correlation spectra of A53T a-synuclein fibrils recorded at effective sample
temperatures of ~0 °C (red) and —20 °C (black). Homonuclear mixing was achieved by proton-driven spin diffusion for
20 ms in all cases; the external magnetic field strength was 14 T. MAS frequencies were 8.35 kHz (red) and 9.375 kHz
(black), respectively. Spectra were acquired with 320 #; increments corresponding to a maximum #; of 5.3 ms, with 128
scans per t; increment. During t; and t,, SPINAL-64 decoupling® on protons with field strengths of up to 90 kHz was
employed. The duration of the initial cross-polarization pulse was 400 ps in all cases. (b) Two-dimensional "H/**C "H-T,-
filtered HETCOR spectrum of A53T a-synuclein. The spectrum was recorded at a magnetic field strength of 9.4 T with a
spinning speed of 9.5 kHz, at a sample temperature of +5 °C. The T filter delay was 2x100 us, and the contact time was
1 ms. The spectrum was recorded without homonuclear decoupling during #;. Eighty t; increments, amounting to a
maximum t; time of 8 ms, were recorded with 512 scans per slice.
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freezing point). As in the case of spectra recorded on
fibrils of wild-type a-synuclein, the signals are well-
resolved with line widths of between 0.5 ppm and
1 ppm for °C and "N resonances. All cross-
correlations stemming from serine, threonine, and
leucine residues giving rise to resolved signals
below the freezing point are also clearly present in
the spectrum recorded at 0 °C. This holds also for
signals from valine residues with secondary
chemical shifts indicative of p-sheet conformation.
However, the region of the C*/C"” and C*/C" cross-
peaks of glutamine and glutamic acid appears
significantly more crowded in the spectrum of
the frozen sample, which can be either due to
homogeneously or inhomogeneously broadened
resonances or due to an increased number of
resonances. Likewise, cross-correlations typical of
proline with random-coil chemical shifts are signifi-
cantly enhanced in the low-temperature spectrum.
Furthermore, at least one valine cross-correlation
with secondary chemical shifts typical of a-helical
conformation is observed in the low-temperature
spectrum, but is absent from the high-temperature
spectrum. All 5 proline residues and 10 of 18
glutamic acid residues in the sequence are located
in the C-terminus, which has already been shown
to be mobile and to be not involved in the r1%1d
f1br11 core in fibrils from wild-type a-synuclein®

¥ (Heise et al., in preparation).

To further probe the mobility of residues on a
molecular level, we recorded a 'H/'>C HETCOR
spectrum with a proton T, filter of 2x100 ps and a
long cross-polarization step of 1 ms (Fig. 2b). Under
these conditions, only resonances from mobile seg-
ments of immobilized proteins were detected.?32°

40 50 60

As with wild-type a-synuclein, resonances with
random-coil chemical shifts could be identified
unambiguously for the following amino acid
types: alanine, asparagine, aspartate, glycine, glu-
tamic acid, isoleucine, leucine, lysine, methionine,
proline, and tyrosine, whereas a "“C resonance of
around 70 Plfmr which would be characteristic of
threonine C®” in random-coil conformation, is
clearly missing from the subsection of the mobile
amino acids. One signal set characteristic of alanine
preceding a proline residue can be assigned to
A107, whereas the mobile isoleucine residue is
assigned to 1112, as the 1dent1ty of 188 is unambig-
uous from the '>C/'*C correlation spectra. A
summary of ssNMR resonance assignments is
given in Supplementary Information. Signals with
secondary chemical shifts deviating by >1 ppm
from the random-coil value cannot be identified in
the spectra. In particular, the presence of a-helical
valine, and of proline and serine in an extended
conformation in the highly mobile regions of the
protein can be excluded with certainty. As dis-
cussed previously for wild-type a-synuclein, the
distribution of amino acids in the mobile part of
AS53T a-synuclein fibrils speaks in favor of a mobile
unstructured C-terminus, whereas the absence
of mobile threonine residues indicates that the
N-terminus from residue 22 onwards is more rigid,
although not necessarily well-structured.

The B-sheet core of A53T a-synuclein fibrils is
extended with respect to wild-type a-synuclein

The most striking difference between the fibrils of
wild-type a-synuclein and the fibrils of A53T
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Fig. 3. Backbone angles obtained with TALOS® analysis of the chemical shifts. Only torsion angle pairs where at least
eight hits were found are plotted, together with the error bars. For comparison, 3-strands determined earlier for both

wild-type forms™

are given together with the p-strands of A53T. Nonassigned amino acids are marked with gray bars,

and p-sheets as determined by TALOS are indicated by white arrows; assigned residues for which TALOS did not yield

conclusive results are marked with a black line.
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mutant relates to resonances found at the N- and C-
terminal ends of the fibril core. In the mutant form,
we detected signal patterns of two different leucine
residues with extremely low-field secondary chemi-
cal shifts for C”, typical of 3-sheet conformation. In
contrast to ssNMR data of fibrils from wild-type -
synuclein, in which correlations with such pro-
nounced P-sheet characteristic chemical shifts were
missing,>?**" we could unambiguously assign
those two leucine residues flanking the core region
(i.e., residues L38 and L100). Leucine residues L8
and L113 did not give rise to resolved signals in the
dipolar '*C/'3C spectra. These residues most likely
contribute to the leucine resonances in the T,-
filtered HETCOR spectra displaying mobile parts of
A53T a-synuclein fibrils. The large secondary
chemical shifts of L100 and L38, characteristic of
p-sheet secondary structure, are in contrast to pre-
vious results on both wild-type forms, with which
only L38 could be assigned with resonances close to
random-coil chemical shifts (although a TALOS
analysis assigned L38 in A-type fibrils as part of a
p-strand).” Likewise, in the spectra of Kloepper
et al., characteristic signal patterns for leucine residues
in p-sheet conformation are clearly missing in all
spectra recorded at high and low temperatures® and
from dehydrated fibrils, indicating that in these
samples, residues L100 and L38 either reside in less-
well-defined regions or exhibit much less pronounced
characteristic p-strand secondary shifts.?” An increase
in p-strand character in the -alpha-synuclein mutant
is furthermore supported by pairwise assignments for
G36, V37 and D98, and Q99 and G101.

In Fig. 3, the results of a TALOS™ analysis of the
chemical shifts of all assigned residues from V37 to
G101 are displayed and compared with those of the
B-sheet regions identified earlier for both forms of
wild-type a-synuclein. Compared to the latter, the
core region of the mutant, characterized by ordered
p-sheets, extends further towards the C-terminus,
whereas the main core region is preserved, except
for minor differences.

Conclusions

We have studied fibrils grown from the disease-
related A53T mutant of a-synuclein by solid-state
MAS NMR spectroscopy. Fibrils consist of a well-
ordered rigid core region that is rich in 3-sheets and a
highly flexible and unfolded C-terminus, whereas the
N-terminus lacks high mobility starting from residue
22. Site-specific resonance assignments for a large part
of the amino acids in the core regions were obtained
from two-dimensional homonuclear *C/"*C and
heteronuclear >N /'C correlation spectra. Intrinsic
dynamics of the protein were probed by spectroscopy
at different temperatures, as well as by a combined
mobility filter experiment specific for mobile regions
of immobilized molecules. According to our results,
almost all resonances indicative of a (-sheet con-
formation are in rigid protein compartments. Upon
freezing of the sample, resonances with random-coil
and a-helical secondary chemical shifts appear in the

spectrum, indicating that the fibrils contain regions
with increased mobility and structural elements other
than p-sheet, while the intensities of resonances in -
strands do not increase unexpectedly. For example,
the low-temperature spectrum indicates the existence
of at least one valine residue with a chemical shift
typical of a-helical conformation, which is neither
part of the flexible C-terminus nor part of the rigid
core region, but belongs to a region of intermediate
mobility. These findings agree well with our previous
investigations on wild-type fibrils, in which sequen-
tial resonance assignments for a large part of the core
region could be obtained from spectra recorded above
the freezing point. Interestingly, they differ from
recent investigations of Kloepper et al., where the
resonance intensities of almost all threonine and
serine resonances and most alanine resonances,
whether in the P-sheet core region or not, were
reduced beyond the detection limit in spectra taken
above the freezing point. Such discrepancies can be
explained by the existence of different fibril isoforms,
characterized by variations in chemical shifts and
molecular mobility. Similar to our previous results
obtained on wild-type a-synuclein, the C-terminus is
unfolded and highly dynamic.

The striking difference between the A53T and
wild-type a-synuclein is an increase in the p-strand
character of two leucine residues at the edges of the
core region, indicating an extension of the rigid well-
ordered p-sheet-rich core region towards at least
residues L38 and L100. Inasmuch as the mutation
site is 48 residues removed from L100, a conforma-
tional change of this residue in the monomer directly
caused by the mutation appears unlikely. Solution
NMR studies on spin-labeled monomers have
suggested a reduced shielding effect between
different domains of the molecule as a cause for
the accelerated aggregation kinetics in A53T,*
which could result in an earlier or a more efficient
exposure of the C-terminal region leading to the
more facile association of neighboring molecules.
Alternatively, the accelerated aggregation kinetics
itself could result in a different pattern of molecular
assembly characterized by an extended p-sheet core
region. However, in fibrils of both the mutant and
the wild-type a-synuclein, the C-terminus extending
from at least residue 107 is flexible, whereas the
N-terminus extending from residue 22 is rigid.

These results provide important insights into the
effect of changed aggregation properties on the final
fibril morphology of one disease-related mutant of
a-synuclein. Further studies of this kind may help to
delineate the relationship between the etiology of
Parkinson’s disease and protein misfolding.
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