286 research outputs found

    Unexpected Effect of Internal Degrees of Freedom on Transverse Phonons in Supercooled Liquids

    Full text link
    We show experimentally that in a supercooled liquid composed of molecules with internal degrees of freedom the internal modes contribute to the frequency dependent shear viscosity and damping of transverse phonons, which results in an additional broadening of the transverse Brillouin lines. Earlier, only the effect of internal modes on the frequency dependent bulk viscosity and damping of longitudinal phonons was observed and explained theoretically in the limit of weak coupling of internal degrees of freedom to translational motion. A new theory is needed to describe this new effect. We also demonstrate, that the contributions of structural relaxation and internal processes to the width of the Brillouin lines can be separated by measurements under high pressure

    Diffusion of spheres in isotropic and nematic suspensions of rods

    Get PDF
    Diffusion of a small tracer sphere (apoferritin) in isotropic and nematic networks [of fd virus] is discussed. For a tracer sphere that is smaller than the mesh size of the network, screened hydrodynamic interactions between the sphere and the network determine its diffusion coefficient. A theory is developed for such interactions as well as their relation to the long-time self-diffusion coefficient. Fluorescence correlation spectroscopy measurements on mixtures of apoferritin and fd virus are presented. The long-time self-diffusion coefficient of apoferritin is measured as a function of the fd-virus concentration, both in the isotropic and nematic state, in directions parallel and perpendicular to the nematic director. The hydrodynamic screening length of the fd-virus network as a function of fd concentration is obtained by combining these experimental data with the theory. Surprisingly, the screening length increases with increasing concentration in nematic networks. This is due to the increase in the degree of alignment, which apparently leads to a strong increase of the screening length. Hydrodynamic screening is thus strongly diminished by alignment. A self-consistent calculation of the screening length does not work at higher concentrations, probably due to the strong variation of the typical incident flow fields over the contour of a rod

    Unusual features of long-range density fluctuations in glass-forming organic liquids : a Rayleigh and Rayleigh-Brillouin light scattering in study

    Get PDF
    A new feature of glass-forming liquids, i.e., long-range density fluctuations of the order of 100 nm, has been extensively characterized by means of static light scattering, photon correlation spectroscopy and Rayleigh-Brillouin spectroscopy in orthoterphenyl (OTP) and 1,1-di(4'-methoxy-5' methyl-phenyl)-cyclohexane (BMMPC). These long-range density fluctuations result in the following unusual features observed in a light scattering experiment. which are not described by the existing theories: (i) strong q-dependent isotropic excess Rayleigh intensity, (ii) additional slow component in the polarized photon correlation function, and (iii) high Landau-Placzek ratio. These unusual features are equilibrium properties of the glass-forming liquids and depend only on temperature, provided that the sample has been equilibrated long enough. The temperature-dependent equilibration times were measured for BMMPC and are about 11 orders of magnitude longer than the a process. It was found that the glass-forming liquid OTP may occur in two states: with and without long-range density fluctuations (''clusters"). We have characterized the two states by static and dynamic light scattering in the temperature range from T-g to T-g + 200 K. The relaxation times of the a process as well as the parameters of the Brillouin line are identical in both OTP with and without clusters. The a process (density fluctuations) in OTP was characterized by measuring either the polarized (VV) or depolarized (VH) correlation function, which are practically identical and a-independent. This feature, which is commonly observed in glass-forming liquids, is not fully explained by the existing theories

    Interparticle correlations due to electrostatic interactions: A small angle x-ray and dynamic light scattering study. I. Apoferritin

    Get PDF
    The structure and dynamics of the spherical protein Apoferritin in aqueous solution are studied over a wide range of protein concentrations and ionic strengths. At high ionic strength and low protein concentration, the intermolecular forces are screened and, therefore, the proteins behave like uncharged molecules. Under these conditions, the form factor of Apoferritin was measured by means of small angle x-ray scattering ͑SAXS͒ and the hydrodynamic radius was determined by means of dynamic light scattering ͑DLS͒. The sample was found to be highly monodisperse. By decreasing the content of salt added, interactions between the Apoferritin particles were initiated. These intermolecular forces lead to a pronounced maximum in the SAXS intensity. At the same time, a slow mode appears in the relaxation time distribution, additionally to the diffusive mode. The relative amplitudes and correlation times of the diffusive and the slow mode were investigated and compared with predictions of the coupled mode theory. By assuming the slow mode to be related to the correlated motion of ordered domains, the size of these domains was derived from the slow relaxation time. From the x-ray data and the Apoferritin form factor, structure factors of ordered solutions were calculated. The shape of the structure factor peaks was studied as a function of Apoferritin and salt concentration. Finally, by using the DLS information regarding the size of correlated domains, we analyzed the degree of polyelectrolyte ordering within the paracrystalline domains in Apoferritin solutions

    Collective diffusion in charge-stabilized suspensions: Concentration and salt effects

    Get PDF
    The authors present a joint experimental-theoretical study of collective diffusion properties in aqueous suspensions of charge-stabilized fluorinated latex spheres. Small-angle x-ray scattering and x-ray photon correlation spectroscopy have been used to explore the concentration and ionic-strength dependence of the static and short-time dynamic properties including the hydrodynamic function H (q), the wave-number-dependent collective diffusion coefficient D (q), and the intermediate scattering function over the entire accessible range. They show that all experimental data can be quantitatively described and explained by means of a recently developed accelerated Stokesian dynamics simulation method, in combination with a modified hydrodynamic many-body theory. In particular, the behavior of H (q) for de-ionized and dense suspensions can be attributed to the influence of many-body hydrodynamics, without any need for postulating hydrodynamic screening to be present, as it was done in earlier work. Upper and lower boundaries are provided for the peak height of the hydrodynamic function and for the short-time self-diffusion coefficient over the entire range of added salt concentrations.Fil: Gapinski, J.. A. Mickiewicz University; PoloniaFil: Patkowski, A.. A. Mickiewicz University; PoloniaFil: Banchio, Adolfo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Holmqvist, P.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Meier, Guillermo Enrique. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Lettinga, M.P.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; AlemaniaFil: Nägele, G.. Helmholtz Gemeinschaft. Forschungszentrum Jülich; Alemani

    Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former

    Get PDF
    In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τα = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H+ hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dT g /dP coefficient, stretching exponent βKWW and dynamic modulus E a /ΔV # were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications

    Acoustic and relaxation processes in supercooled o-ter-phenyl by optical-heterodyne transient grating experiment

    Full text link
    The dynamics of the fragile glass-forming o-ter-phenyl is investigated by time-resolved transient grating experiment with an heterodyne detection technique in a wide temperature range. We investigated the dynamics processes of this glass-former over more then 6 decades in time with an excellent signal/noise. Acoustic, structural and thermal relaxations have been clearly identify and measured in a time-frequency window not covered by previous spectroscopic investigations. A detailed comparison with the density response function, calculated on the basis of generalized hydrodynamics model, has been worked out

    Inelastic x-ray scattering reveals the ergodic to nonergodic transition of salol, a liquid with local order

    No full text
    We have studied the high-frequency dynamics of salol by inelastic x-ray scattering over a wide temperature range between 50 and 450 K, across the glass transition. We find that salol efficiently realizes the mechanism of dynamical arrest described by the mode-coupling theory, as manifested by a cusp singularity in the behaviour of the non-ergodicity parameter and a QQ dependence of the critical non-ergodicity parameter that is in phase with the static structure factor. These results confront positively the mode-coupling theory with liquids with local order.Comment: 7 pages, 6 figure
    corecore