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Diffusion of a small tracer sphere �apoferritin� in isotropic and nematic networks �of fd virus� is
discussed. For a tracer sphere that is smaller than the mesh size of the network, screened
hydrodynamic interactions between the sphere and the network determine its diffusion coefficient.
A theory is developed for such interactions as well as their relation to the long-time self-diffusion
coefficient. Fluorescence correlation spectroscopy measurements on mixtures of apoferritin and fd
virus are presented. The long-time self-diffusion coefficient of apoferritin is measured as a function
of the fd-virus concentration, both in the isotropic and nematic state, in directions parallel and
perpendicular to the nematic director. The hydrodynamic screening length of the fd-virus network
as a function of fd concentration is obtained by combining these experimental data with the theory.
Surprisingly, the screening length increases with increasing concentration in nematic networks. This
is due to the increase in the degree of alignment, which apparently leads to a strong increase of the
screening length. Hydrodynamic screening is thus strongly diminished by alignment. A
self-consistent calculation of the screening length does not work at higher concentrations, probably
due to the strong variation of the typical incident flow fields over the contour of a rod. © 2006
American Institute of Physics. �DOI: 10.1063/1.2161204�
I. INTRODUCTION

Diffusion in various types of lyotropic mixtures have
been of increasing interest, not only since this is interesting
in itself but also due to its biological relevance: tracer diffu-
sion in networks �of rods� is probably relevant for mass
transport of proteins in the cell. As such, most of the inves-
tigations have been focused on diffusion of spherelike tracers
in F-actin networks/cytoplasm and their mechanical proper-
ties, where tracer spheres are sometimes used to probe mi-
crorheological response.1–11

To gain in fundamental understanding on diffusion of
spheres through networks we have performed fluorescence
correlation spectroscopy �FCS� experiments on a relatively
simple model system: apoferritin as a tracer particle and a
�isotropic or nematic� network of feline distemper �fd�-virus
particles. Apoferritin is a semispherical protein with a diam-
eter of 12.8 nm, while fd virus is a very long and thin rod
�contour length of 880 nm and thickness of 6.8 nm�, which is
relatively stiff �persistence length is 2200 nm�. Fd virus has
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been shown to be a very nice model system for rodlike col-
loids which exhibit an isotropic-nematic-smectic phase
transition.12–16 Some �micro-� rheological experiments have
been performed on fd suspensions.17–20 Mixtures of apofer-
ritin and fd virus are stable at high salt concentrations �ex-
periments are done at 110 mM�. The interactions between
apoferritin and fd-virus particles and between different fd
rods are therefore almost hard-core-like. The diameter of the
tracer protein is small in comparison with the typical mesh
size of the fd-virus network, and is comparable with the
thickness of the rods. Spheres with a diameter substantially
larger than the diameter of a rod do not dissolve in a lyotro-
pic nematic. It is therefore natural to study diffusion of small
spheres as far as nematic networks are concerned. The exist-
ing theories on diffusion through networks/porous media are
either microscopic theories where diffusion through “net-
works” of fixed spheres/points are considered �see Refs.
21–24 and older references therein� or phenomenological,
qualitative results are derived �see Refs. 25–27�. In Ref. 28,
the effect of a fibrous medium on the concentration depen-
dence of the gradient-diffusion coefficient of spheres is dis-

cussed. As far as we know, there is no microscopic theory
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concerned with self-diffusion of spheres through open net-
works of rodlike obstacles. For the open networks considered
here, �screened� hydrodynamic interactions between the
sphere and the rods determine the diffusive properties to a
large extent. A semiquantitative theory is developed in the
present paper to describe the diffusion of a small tracer
sphere in an open network of stiff rods, within a similar
framework as developed in Refs. 29 and 30 for flexible poly-
mers, where the prediction of the hydrodynamic screening
length remains an open problem.

In a previous paper,31 diffusion of colloidal tracer
spheres of various diameters in isotropic fd-virus suspen-
sions, with concentrations substantially below the isotropic-
nematic transition concentration, has been studied. FCS, dy-
namic light-scattering, and video microscopy experiments
were performed depending on the diameter of the tracer
sphere. Furthermore, a theory is developed in that paper for
tracer diffusion of large tracer spheres at low concentrations
of rods. In the present paper the other limiting case of very
small tracers is considered, both in isotropic and nematic rod
dispersions.

Diffusion of spherical-like tracers in other types of host
matrices have also been investigated, such as aqueous solu-
tions of polystyrene sulfonate,32 dextran solution,33 flexible
poly�acrylamide� gels,34 agarose gels,35 dendrites of cultured
mitral cells,36 polymer solutions,37 semidilute DNA
solutions,38 and in dispersions of xanthan.39

Little work has been done on tracer diffusion of rods.
Van Bruggen et al.40,41 used fluorescence recovery after pho-
tobleaching �FRAP� to study self-diffusion of Boehmite rods
in concentrated dispersions, where both diffusions parallel
and perpendicular to the nematic director are probed. The
same technique has been employed by Lellig et al.42 to probe
diffusion of tobacco mosaic virus �TMV� in a host matrix of
charged fluorinated latex spheres. Video �confocal� micros-
copy has been employed very recently to measure the self-
diffusion coefficient of fd virus in concentrated dispersion,
again both parallel and perpendicular to the director.43 There
is a large difference between the diffusion coefficients related
to diffusion parallel and perpendicular to the director.

The long-time self-diffusion coefficient can be obtained
from the relation,44

Ds = kBT/�p, �1�

where kB is Boltzmann’s constant, T the temperature, and �p

the friction coefficient of the tracer particle with its surround-
ing, including both frictions with the solvent and interactions
with other colloidal particles. The relation �1� can be derived
from a Langevin equation in precisely the same way as the
original Einstein relation for the diffusion coefficient of a
single sphere in an otherwise unbounded fluid. The fluctuat-
ing force in the Langevin equation now includes forces due
to interactions with other colloidal particles. Coarse graining
to a time scale that is long in comparison with typical colloid
relaxation times renders the correlation function of this fluc-
tuating force delta correlated in time. Such a delta correlation
of forces leads to the relation between the long-time self-
diffusion coefficient and the friction coefficient as given in

Eq. �1�. In case of tracer diffusion of a sphere through a
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network of rods, the friction coefficient is generally deter-
mined by both hydrodynamic and direct interactions of the
tracer sphere with the rods. For tracer spheres which are
small in comparison with the mesh size of the network, it
will turn out that the hydrodynamic contribution is dominant.

The friction coefficient connects a small external force
Fext acting on the sphere with the resulting ensemble-
averaged velocity vp of the tracer sphere as

Fext = �pvp. �2�

In order to obtain the friction coefficient �, one should thus
calculate the ensemble-averaged velocity of the tracer sphere
due to a small external force.

The relation �1� no longer holds in case the dynamics of
the network is very slow, such that the duration of an experi-
ment is not very much larger than the corresponding network
relaxation time. In this case, the above-mentioned coarse
graining to render forces delta correlated in time is not
achieved. Anomalous diffusion will then be observed in the
sense that the mean-squared displacement is not linear in
time. Diffusion properties should now be obtained from an
analysis of the Langevin equation where the forces are not
delta correlated.

In the absence of such anomalous diffusion, the follow-
ing two limiting cases can be distinguished when considering
self-diffusion of spheres in networks of rods.

�i� The size of the tracer sphere is large compared with
the mesh size of the network of the rods. In this case,
microstructural order of the network of rods is se-
verely distorted as the tracer sphere is pulled through
the network �as depicted in Fig. 1�a��. The rod con-
centration is enhanced in front of the moving tracer
sphere, while it is decreased in its wake. In addition,
orientational order of rods around the tracer sphere
will be affected. The accompanied distortion of the
tracer-host pair-correlation function determines the

FIG. 1. �a� The effective friction coefficient for a big sphere is preliminary
determined by the distortion of the pair-correlation function g between the
tracer sphere and the rods. Here, microstructural order of the network is
severely distorted on pulling the tracer sphere through the network. �b� For
a small sphere in an open network, hydrodynamic interactions with the
essentially undistorted network determine the effective friction coefficient.
�c� Even when the network structure is not affected by pulling the tracer
sphere through the network, the pair-correlation function g will be distorted
by the external force on the tracer sphere. The gray circle is a cross section
through the core of a rod. The � and � denote an increased and decreased
pair-correlation function due to “shadowing,” respectively.
friction coefficient. Hydrodynamic interactions be-

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



044907-3 Diffusion of spheres in suspensions of rods J. Chem. Phys. 124, 044907 �2006�
tween the tracer sphere and the rods are less important
for this case.

�ii� The size of the tracer sphere is small compared with
the mesh size of the network. In this case the distortion
of microstructural order of the network as the tracer
sphere is pulled through is much less important, since
the sphere can simply move through the “holes” in the
network. Microstructural order of the rod network can
be considered unaffected by the tracer sphere. The
effective friction coefficient is now determined by hy-
drodynamic interactions between the tracer sphere
and the rods �see Fig. 1�b�� as well as the distortion of
the pair-correlation function for tracer sphere and
rods. Although the network structure is unaffected by
pulling the small tracer sphere through the network,
the tracer-host pair-correlation function will still be
distorted through the “probability shadow” that a rod
creates �as depicted in Fig. 1�c��: the probability to
find the sphere above the rod is higher than below,
since the sphere has to avoid the core of the rod on
passing it. The latter phenomenon will be referred to
here as the “shadowing effect.”

A variational approach has been developed in Ref. 31 for
case �i� for rod concentrations below the overlap concentra-
tion. For higher concentrations, above the overlap concentra-
tion, correlations between different rods must be included.
The variational approach might be generalized to take such
correlations into account.

In the present paper, we will consider case �ii�, where
microstructural order of the network is not affected by the
tracer sphere. Hydrodynamic interactions as well as the
“shadowing distortion” of the pair-correlation function will
be addressed in the present paper. Theoretical predictions for
the hydrodynamic and shadowing contributions to the diffu-
sion coefficient are made in Sec. II. Due to strong entangle-
ment of the rods, hydrodynamic interactions between the
tracer sphere and the rods are screened. There is no indepen-
dent theory for the screening length. The screening length
will be an adjustable parameter when comparing experimen-
tal results with the theory developed in Sec. II. At the end of
the theoretical summary in Sec. II C we will show that the
long-time self-diffusion coefficient is equal to Fick’s gradient
diffusion coefficient, provided that the network structure is
not affected by the presence of the tracer spheres. The long-
time self-diffusion coefficient is thus relevant for mass trans-
port of dilute dispersions of small spheres in open networks.
Section III introduces the colloidal particles that have been
used in the experimental study. In Sec. IV tracer diffusion
coefficients as obtained from FCS are presented, and the
theory discussed in Sec. II is used to extract the hydrody-
namic screening length from these data, both for isotropic
and nematic networks of rods. Section V is a summary and
discussion.

II. THEORY

In this section, tracer diffusion of a small sphere through
an open network is discussed, corresponding to the limiting

situation of case �ii� mentioned in the Introduction. In such
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an open network, the structure of the network will only be
slightly affected when pulling the small tracer sphere through
the network. Neglecting the network distortion, hydrody-
namic interaction of the tracer sphere with the rods and the
shadowing effect determine the diffusion coefficient. The hy-
drodynamic contribution is discussed in Sec. II A and the
shadowing effect is discussed in Sec. II B. As will turn out,
the hydrodynamic contribution is dominant over the shadow-
ing effect for small tracer spheres.

A. The hydrodynamic contribution

Consider the tracer sphere on which an external force
Fext acts which is such that it sustains a prescribed velocity
vp of the tracer particle. The moving tracer sphere induces a
fluid flow u0 �see Fig. 2�a��. Each of the rods in the network
will reflect the incident flow field u0. The fluid flow ur that is
reflected by each rod affects the force Fext that is necessary to
sustain the prescribed velocity of the tracer sphere �see Figs.
2�b� and 2�c��. This contributes to the effective friction co-
efficient of the sphere, and thus to a rod-concentration-
dependent diffusion coefficient. Since the network is as-
sumed to be relatively open to the tracer sphere, higher-order
reflections of flow fields are relatively unimportant as com-
pared with the leading order reflected field ur by each indi-
vidual rod. Second- and higher-order reflected fields will be
neglected. Considering hydrodynamic interaction between
the tracer sphere and a given rod, there is an influence of the
rods in between the sphere and the particular rod due to
“hydrodynamic screening.” Above the overlap concentration
of rods, each rod is assumed to be entangled to such an
extent that it will be fixed in space on reflection of the inci-
dent fluid flow u0. The force on each rod due to the incident
field u0 is thus assumed to be counterbalanced by its inter-
actions with other rods in the network. The total force that
the flow u0 exerts on the rod is thus nonzero, which leads to
hydrodynamic screening. Both the field u0 generated by the
moving sphere and the reflected flow field ur from a given
rod traverse through the network of entangled rods, as de-
picted in Figs. 2�b� and 2�c�. The hydrodynamic influence of
the rods, intermediate between the sphere and the particular
rod under consideration, can be described in a mean-field
approximation by adding a body force to the creeping flow
equations. This body force is equal to the total force �per unit
volume� that the entangled rods exert on the fluid. The force
with which a single rod, immersed in a flow field u, acts onto

FIG. 2. �a� The flow field u0 generated by a moving sphere in an unbounded
fluid. �b� The flow field u0 generated by the moving sphere traverses through
the network before reaching the rod with which hydrodynamic interaction is
considered. �c� The reflected flow field ur from the rod under consideration
traverses through the network back to the tracer sphere.
the fluid is equal to
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F = − �u , �3�

where � is an “effective friction coefficient.” The corre-
sponding body force is thus equal to

f = − �̄�u , �4�

with �̄ the number density of rods. This can be alternatively
written as

f = − �0�2u with � = ��̄�/�0, �5�

where �0 is the shear viscosity of the fluid and “the hydro-
dynamic screening length” 1/� is a measure for the distance
over which screening becomes effective. Aside from body
forces �0�

2u due to friction, and body forces, �p arising
from gradients in the pressure p, there is now a body force
�5� from the intervening rods between the tracer sphere and
the particular rod under consideration. The creeping flow
equation is thus replaced by the Debye-Büche-Brinkman
equation,

�0�
2u − �p − �0�2u = 0, � · u = 0. �6�

The Green’s function for the fluid flow velocity of this equa-
tion reads

Ts�r� =
1

4��0r
�h1�x�Î + h2�x�r̂r̂� ,

h1�x� = − x−2 + exp�− x��1 + x−1 + x−2� ,

h2�x� = 3x−2 − exp�− x��1 + 3x−1 + 3x−2� , �7�

where Î is the identity and x=�r, with r the distance between
the positions of the point where a force acts and the point
where the resulting fluid flow velocity is measured, while r̂
=r /r is the unit vector along r. The subscript s stands for
“screening.” For short distances or long screening lengths,

h1�x� = 1/2 = h2�x� for x↓0, �8�

in which case the screened Oseen tensor �7� reduces to the
Oseen tensor for the creeping flow equations in the absence
of the body force �5�. Contrary to the Oseen tensor, the
screened Oseen tensor varies like �r−3 for large distances.
This will turn out to be important for the convergence of
ensemble averages that determine the diffusion coefficient.

For a nematic network of rods, the screening length is in
principle anisotropic. However, since the flow induced by a
sphere is stronger in the direction of motion of the sphere, it
will be assumed here that the most important contributions to
hydrodynamic interactions relates to the fluid flow in the
direction of motion of the tracer sphere �which is either par-
allel or perpendicular to the director of the nematic network�.
The validity of this assumption needs further theoretical
work, where the Green’s function of the Debye-Büche-
Brinkman equation with an anisotropic screening should be
computed. As far as we know this has not been done yet, and
is outside the scope of the present paper.

The mean-field concept of hydrodynamic screening
makes sense only when the hydrodynamic screening length
1/� is larger than the mesh size of the network. For the open

networks under consideration, the mesh size is much larger
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than both the thickness D of the rods and the diameter 2a of
the tracer sphere. We shall therefore assume hereafter that
�D and �a are small numbers. The induced hydrodynamic
force distribution over the surface of the tracer sphere is
therefore not affected by screening. Furthermore, the typical
distance between the tracer sphere and rods in the relatively
open network will be large in comparison with the radius of
the sphere. Within these limits, the velocity field u0 of the
moving tracer sphere with velocity vp in an otherwise quies-
cent and unbounded, screened fluid is equal to

u0�r� = 6��0aTs�r − rp� · vp, �9�

with rp the position of the center of the sphere.
Once the reflected field ur by a rod immersed in the

velocity field u0 is known, the force Fext on the tracer sphere
that is necessary to maintain its velocity vp follows from
Faxén’s theorem for a Debye-Büche-Brinkman fluid.28 Since
the screening length is large in comparison with the radius of
the sphere, however, Faxén’s theorem for an unscreened fluid
can be used here, that is,

Fext = 6��0a�vp − ur�r = rp�� , �10�

where it is assumed that the variation of the reflected flow
field over the sphere’s surface can be neglected. This is typi-
cally the case for the small sphere in the open network of
rods under consideration here.

The calculation of the field ur that is reflected by a single
rod immersed in the flow field u0 proceeds as follows.

The rod under consideration is modeled as a rigid string
of 2m+1 spherical beads with diameter D equal to the thick-
ness of the rod. Each bead is indexed by a number 	, which
ranges from −m to +m. The value of m is set by the aspect
ratio as 2m+1=L /D, with L the length of the rod. The po-
sition coordinate of the 	th bead is written as rc+D	û,
where rc is the center position of the rod �the position the
bead with index number 0�, and the unit vector û defines the
orientation of the long axis of the rod.

The fluid flow velocity ur�r� at point r that is reflected
by the rod after insertion in the flow field u0 generated by the
moving sphere is thus written as a sum over beads which
constitute the rod under consideration,

ur�r� = 	
	

Ts�r − rc − D	û� · F	
h , �11�

where F	
h is the force that bead 	 exerts on the fluid. As

before, the assumption here is that the hydrodynamic screen-
ing length is large as compared with the thickness of the rod.
For the open networks under consideration, the incident flow
u0 varies little over distances of order D, so that Faxén’s
theorem for bead 	 reads

F	
h = 3��0D�v	 − u	

��r = rc + D	û�� , �12�

where v	 is the velocity of bead 	, and u	
� is the total flow

velocity that would exist in the absence of bead 	 �as indi-
cated by the ��. Assuming that the rod is fixed in space,

v	 = 0. �13�

Furthermore, the velocity u� that would have existed in the

absence of bead 	 is equal to
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u	
��r� = u0�r� + 	


�	

Ts�r − rc − D
û� · F

h,�. �14�

Here, F

h,� is the force of bead 
 on the fluid, in the absence

of bead 	. The use of the screened Oseen tensor here ac-
counts for screening of the flow field generated by beads 

during its propagation to bead 	, typically over distances of
the order of the length L of the rod. For very long and thin
rods, the forces F


h,� are to a good approximation equal to the
forces F


h of the intact rod, except for the relatively small
number of beads close to bead 	. This approximation leads
to correct asymptotic expressions for friction coefficients of
single, very long, and thin rods. Hence, we will replace F


h,�

by F

h . The expressions �11�–�14� thus lead to the following

“integral equation” for the hydrodynamic forces,

F	
h

3��0D
+ u0�r = rc + D	û� + 	


�	

Ts�Dû�	 − 
�� · F

h

= 0. �15�

Consider the bead-index sum in Eq. �15�. Using Eq. �7� for
the screened Oseen tensor, this sum can be written as

	

�	

Ts�Dû�	 − 
�� · F

h

=
1

4��0D
F	

h · 	

�	

1



 − 	

�h1��D
	 − 

�Î

+ h2��D
	 − 

�ûû�

+
1

4��0D
	


�	

F

h − F	

h



 − 	

· �h1��D
	 − 

�Î

+ h2��D
	 − 

�ûû� . �16�

The first sum on the right-hand side is much larger than the
second sum, since in the second sum the value of 
F


h

−F	
h 
 / 

−	
 is typically much smaller than 
F	

h 
 / 

−	
. The
second sum is therefore neglected. In addition, for very long
and thin rods, for the majority of beads, the first sum is only
slightly depending on 	. The 	 dependence in the first sum
will therefore be neglected. These two approximations �ne-
glecting the second sum in Eq. �16� and neglecting end ef-
fects in the first sum� are discussed in detail in Appendix A,
where it is shown that the errors made are typically about
10%. Hence, Eq. �16� is approximated as

	

�	

Ts�Dû�	 − 
�� · F

h

=
1

4��0D
F	

h · 	

�0

1





�h1��D


�Î + h2��D


�ûû� .

�17�
Replacing the summations by integrations, using that

Downloaded 08 Sep 2006 to 134.94.162.14. Redistribution subject to
	

�0

h1,2��D


�





= ��
−�1/2��L

−�1/2��D

dx + �
�1/2��D

�1/2��L

dxh1,2�
x
�

x


= 2�
�1/2��D

�1/2��L

dx
h1,2�x�

x
, �18�

Eq. �17� leads to

	

�	

Ts�Dû�	 − 
�� · F

h =

1

2��0D
�G��D,�L�Î

+ H��D,�L�ûû� · F	
h , �19�

where

G��D,�L� = �
�1/2��D

�1/2��L

dx
h1�x�

x
and

H��D,�L� = �
�1/2��D

�1/2��L

dx
h2�x�

x
. �20�

Note that in the absence of screening, where �→0,

G��D,�L� = 1
2 ln�L/D� = H��D,�L� �no screening� .

�21�

Using the result �19� in Eqs. �15� and �9� for the incident
field u0 thus leads to an explicit expression for the hydrody-
namic forces on beads,

F	
h = −

12���0�2Da

G��D,�L�

��Î −
H��D,�L�

G��D,�L� + H��D,�L�
ûû · Ts�R − D	û� · vp,

�22�

where R=rp−rc is the distance between the centers rp and rc

of the sphere and the rod, respectively. The first term on the
left-hand side of the integral equation �15� is logarithmically
in L /D smaller than the bead-index sum, and is therefore
neglected. From the expression �11� for the reflected flow
field and Faxén’s theorem �10� it thus finally follows that

Fext = 6��0a�Î + �M�R,û��� · vp, �23�

with the tensor M is equal to

M�R,û� =
12���0�2a

G��D,�L��−�1/2�L

�1/2�L

dlTs�R − lû� · �Î

−
H��D,�L�

G��D,�L� + H��D,�L�
ûû� · Ts�R − lû� ,

�24�

where, as before, the bead-index sum is replaced by a con-
tour integral. The brackets �¯� in Eq. �23� denote ensemble
averaging with respect to the degrees of freedom of the
sphere and rod.

In order to account for the N rods in the network, Eq.

�23� is written as
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Fext = 6��0a�Î + 	
j=1

N

�M�R j,û j�� · vp. �25�

The assumption here is that flow fields that are reflected by a
rod to another rod back to the sphere are relatively weak. As
mentioned before, for the open network under consideration,
this is probably a good approximation.

The probability density function with respect to which
the ensemble average should be evaluated is distorted as a
result of the external force on the tracer sphere. This distor-
tion is proportional to the external field, and therefore gives
rise to second-order terms in Eq. �25�. Since such nonlinear
terms are irrelevant for the calculation of the diffusion coef-
ficient, the distortion of the probability density function can
be neglected in the evaluation of the hydrodynamic contri-
bution to the diffusion coefficient. The expression �25� can
thus simply be averaged with respect to the probability den-
sity function �PDF� in the absence of an external force on the
sphere. According to Eqs. �1�, �2�, �24�, and �25�, this leads
to the following expression for the long-time self-diffusion
coefficient Ds

h where only hydrodynamic interactions are ac-
counted for �as indicated by the superscript h, while the sub-
script on 	h indicates that its value is different for isotropic
and nematic suspensions where either diffusion parallel or
perpendicular to the director is considered�,

Ds
h

D0
=

1

1 + 	iso,�,�
h �

, �26�

with �= �� /4�D2L�̄ the volume fraction of rods ��̄ the num-
ber density of rods�, and where the coefficient 	h is given by

	iso,�,�
h =

4V

�D2L
v̂p · �� drp� drc� dû

�P0�rp,rc,û
��M�R,û� · v̂p, �27�

where v̂p=vp /p is the unit vector along the ensemble-
averaged velocity of the tracer particle, and P0 is the PDF for
the positions rc and rp of the center of a rod and of the tracer
particle, respectively, and the orientation û of a rod in the
network. This PDF depends only on rc and rp through the
distance R=rp−rc between the sphere and a rod. The sub-
script “0” on P is used to indicate that this is the equilibrium
PDF, in the absence of the external force on the sphere. The
superscript “h” on 	 stands for “hydrodynamic,” to distin-
guish it from the coefficient 	 defined in Ref. 31, which
describes the effect of direct interactions. Furthermore, V is
the volume of the system under consideration. For a homo-
geneous network, the PDF P0 is simply equal to

P0�rp,rc,û
�� =
1

V2 P0�û
��exp�− 
V�R,û�� , �28�

where P0�û 
�� is the PDF for the orientation of a rod, 

=1/kBT �with kB is Boltzmann’s constant and T is the tem-
perature�, and V�R=rp−rc , û� is the pair-interaction potential
for a rod and the tracer sphere. Indirect interactions between
the sphere and a rod, mediated by surrounding rods, are ne-

glected here. These indirect forces are small for the small
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tracer sphere in the relatively open network. The expression
�27� can thus be written as

	iso,�,�
h =

4

�D2L
v̂p · �� dR� dûP0�û
��

�exp�− 
V�R,û��M�R,û� · v̂p. �29�

In the above results, it is assumed that the force on the tracer
sphere is colinear with its velocity. This is the case we con-
sider in the experimental section, where diffusion in an iso-
tropic network is considered, as well as diffusion in a nem-
atic rod suspension either parallel or perpendicular to the
nematic director. The more general case where the force and
velocity are not colinear with the nematic director can be
described as a linear combination of the colinear geometries.

For an isotropic network, P�û 
�� is simply equal to
1/4�. For a nematic network however, this PDF depends on
the concentration of rods, since the degree of alignment in-
creases with increasing concentration. The following, reason-
ably accurate Gaussian representation for this PDF will be
used �similar to the Gaussian approximation that Odijk used
in Ref. 45 in his treatment of Onsager’s prediction46 of
isotropic-nematic phase transition�,

P0�û
�� =
1

N�C�
�exp�− C�2�

+ exp�− C�� − ��2��, 0 � � � � , �30�

where � is the angle between û and the nematic director.
The parameter C measures the width of the orientational dis-
tribution. Furthermore, N is the normalization constant,
which is a unique function of C. Note that, for the uniaxial
nematic under consideration here, the symmetry condition
�↔ ��−�� is satisfied by the above expression. The con-
stants N and C are determined as functions of the fd concen-
tration from experimental values for the order parameter for
fd virus in 110 mM buffer as a function of concentration, as
determined from x-ray scattering data47 �see the inset in Fig.
3�.

Without hydrodynamic screening, the screened Oseen
tensor in Eq. �24� for the tensor M becomes equal to the
Oseen tensor, which varies like �R−1. The integrand in Eq.
�29� thus varies like �R−2 for large distances, so that 	h

diverges. This was already noted by Altenberger in case of
diffusion through a set of fixed point scatterers.21,23 The
screened Oseen tensor, however, varies like �R−3 for large
distances, which renders 	 convergent. Hydrodynamic
screening is thus an essential feature in describing self-
diffusion through networks of rods. Note that the effective
upper limit for the R integration in Eq. �29� is set by the
hydrodynamic screening length. The numerical value of dif-
fusion coefficients is thus quite sensitively depending on the
precise value of �.

Numerical results for the coefficient 	h are given in Fig.
3�a� for an isotropic fd network and in Fig. 3�b� for a nematic
fd network �length of an fd virus particle is L=880 nm and
its thickness is D=6.8 nm�. The curves in Fig. 3�a� marked

with the numbers “1” and “5” refer to spheres with a diam-
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eter of D and 5D, while the curve marked with “apo” is for
apoferritin �diameter, 12.8 nm�. The coefficient 	h decreases
with decreasing screening length. The coefficient 	h is ap-
proximately proportional to the size of the tracer sphere for
large screening lengths, which can be seen explicitly from
Eq. �24� for the tensor M. As can be seen from Fig. 3�b�, the
coefficient 	h is about a factor of 2 larger for diffusion per-
pendicular as compared with diffusion parallel to the direc-
tor. Diffusion is thus predicted to be faster along the nematic
director than perpendicular to the director, as far as the hy-
drodynamic contribution is concerned.

B. The shadowing contribution

There are two different configurations of the rod relative
to the external force acting on the tracer sphere that need to
be considered: û �Fext and û�Fext �as depicted in Figs. 4�a�
and 4�b�, respectively�. In case û �Fext, the pair-correlation

FIG. 3. �a� The coefficient 	h as a function of �L for isotropic fd �length of
an fd virus particle is L=880 nm and its thickness is D=6.8 nm� for three
different tracer spheres: “apo” refers to apoferritin which has a diameter of
12.8 nm, while the number 1D and 5D refer to spheres with a diameter of D
and 5D, respectively. �b� The coefficient 	h for nematic fd and apoferritin.
The upper and lower curve are for diffusion perpendicular and parallel to the
nematic director, respectively. Here, the order parameter is equal to S
=0.892, corresponding to the highest concentration of fd of 60 mg/ml in the
experiments. The insert shows the concentration dependence of S as a func-
tion of fd concentration for a salt concentration of 110 mM, which complies
with the experiments described later. The data for the insert are taken from
Ref. 47.

FIG. 4. The distortion of the pair-correlation function for motion of the
sphere parallel to the rods orientation �a� is much less pronounced as for
perpendicular motion �b�. �c� Definition of the cylindrical coordinates: � is
the shortest distance between the center line of the rod and the center of the
sphere and � is the angle between the projection of the position vector of
the sphere onto the xy plane and the positive x axis. Note that the external

force is directed along the negative x direction.
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function is mainly distorted when the sphere interacts with
the tips of the rod. In case û�Fext the distortion is effective
over the entire contour of the rod, and is therefore much
more pronounced. We shall thus consider the case where
û�Fext and construct the distortion of the pair-correlation
function for arbitrary orientations of the rod from these two
special cases. Furthermore, since the diameter of the sphere
is small compared with the length of the rod, end effects will
be neglected, that is, the rod is taken infinitely long.

In the overdamped limit, on the Brownian time scale,
inertial forces on the tracer sphere are very small as com-
pared with all other forces. The resulting force balance im-
plies that

Fext − �V − kBT � ln�g� + Fh = 0, �31�

where � is the gradient operator with respect to the position
coordinate of the tracer sphere. Furthermore, V is the poten-
tial that is set up by a rod, which is again assumed to be fixed
in space due to entanglement forces, g is the pair-correlation
function, and Fh is the force with which the fluid acts on the
sphere. The third term in Eq. �31� is the Brownian force.

The hydrodynamic force on the tracer sphere has been
calculated in the previous subsection as

Fh = − � p
hv, � p

h = 1 + 	h� , �32�

where v is the translational velocity of the sphere and where
the coefficient 	h is given in Eq. �29�. The interpretation in
using � p

h as a prefactor here is that the sphere moves in an
effective Debye-Büche-Brinkman fluid. From the force bal-
ance equation �31� it thus follows that,

v = Ds
h�
Fext − 
 � V − � ln�g�� . �33�

The diffusion coefficient where both hydrodynamic and di-
rect interactions are accounted for follows from Eqs. �1� and
�2� by ensemble averaging of Eq. �33�,

vp � �v� = Ds
h�
Fext − 
��V� − �� ln�g��� . �34�

When the distortion of the pair correlation is neglected, g is
equal to

g = exp�− 
V� �no distortion� , �35�

so that Eq. �34� reduces to

vp = Ds
h
Fext �no distortion� , �36�

which implies that the diffusion coefficient is equal to Ds
h, as

it should. Including the distortion of g leads to additional
contributions to Ds due to direct interactions of the tracer
sphere with the rods.

In order to evaluate the ensemble average in Eq. �34�, g
must be known explicitly. Thus we have to solve the conti-
nuity equation,

�g

�t
= � · �vg� = Ds

h � · �
gFext − 
g � V − �g� , �37�

where Eq. �33� for the velocity has been used.
Neglecting end effects, the pair-correlation function is a

function of the cylindrical coordinates � and � �see Fig.
4�c��. Since we are interested in the linear relationship be-

tween the external force on the tracer sphere and the result-
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ing velocity, equations can be linearized with respect to Fext.
The pair-correlation function is therefore written as �with
g0���=exp�−
V���� the undistorted pair-correlation func-
tion�

g��,�� = g0����1 + cos���L���Fext� . �38�

Substitution into Eq. �37� and transforming to cylindrical co-
ordinates leads to the following equation for the function L:



dg0���

d�
+

d

d�
�g0���

dL���
d�

 − g0���
L���
�2 = 0. �39�

In case of hard-core interactions, this equation reduces for
��a+D /2 to

d2L���
d�2 −

L���
�2 = 0, �40�

since V���a+D /2�=0, and hence g0���a+D /2�=1. The
solution which vanishes for �→� of this equation is

L��� = A/�� with � = 1
2 �1 + �5� = 1.618 . . . . �41�

The integration constant A is determined as follows. For van-
ishing �, again in the case of hard-core interactions �here � is
the one-dimensional delta distribution�, we have

dg0���
d�

= ��� − a − D/2� for

a + D/2 − � � � � a + D/2 + � ��↓0� . �42�

Integrating the differential equation �39� from �=a+D /2
−� to �=a+D /2+� and taking the limit of vanishing �
readily gives


 +
dL�� = a + D/2�

d�
= 0, �43�

from which it follows that

A =



�
�a + D/2�1+�. �44�

According to Eq. �38� the distorted pair correlation thus
reads

g��,�� = g0����1 + 
 cos���
�a + D/2�1+�

��� Fext . �45�

Using this expression for the pair-correlation function, the
ensemble averages on the right-hand side of Eq. �34� can be
calculated. Multiplying the resulting “shadowing friction”
due to the presence of a single rod with the number of rods in
the system one finds


��V� =
1

�
�1 +

2a

D
�2

�
Fext,

�� ln�g�� = 0. �46�

Mathematical details of the derivation of this result are given
in Appendix B.

The above calculation has been done for a rod with a
fixed orientation perpendicular to the direction of the exter-

nal force �see Fig. 4�a��. For orientations parallel to the ex-
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ternal force �see Fig. 4�b�� the “shadowing forces” are ex-
pected to be much smaller. To within linear response in the
external force, which is sufficient for the calculation of the
diffusion coefficient, the ensemble-averaged forces can be
written as a linear combination due to the component
ûû ·Fext of the external force parallel to the rod and the com-

ponent �Î− ûû� ·Fext perpendicular to the rod. Hence, in Eq.
�46�, the external force can simply be replaced by the com-
ponent of the external force perpendicular to the rod’s orien-
tation and averaged over the orientation of the rod,


��V� =
1

�
�1 +

2a

D
�2

�� dû P0�û��Î − ûû� · 
Fext, �47�

where, as before, P0 is the probability density function of the
orientation of a rod. Introducing the tensor

Q � 3
2�ûû − 1

3 Î� � 3
2 � dû P0�û��ûû − 1

3 Î� , �48�

Eq. �48� can be written as


��V� =
2

3�
�1 +

2a

D
�2

��I − Q� · 
Fext, �49�

For an isotropic network, Q=0. For a nematic network, and
for diffusion parallel to the director where Fext is colinear
with the director, Q ·Fext=SFext, with S the largest eigenvalue
of Q �S is sometimes alternatively denoted as P2�. For the
uniaxial nematic under consideration, when Fext is perpen-
dicular to the director, Q ·Fext=− 1

2SFext. From the above ex-
pression �49� and Eq. �34� it thus follows that the self-
diffusion coefficient Ds, where both hydrodynamic
interactions and shadowing are included, is equal to

Ds

D0
=

Ds
hDs

s

D0
2 , �50�

where, as before, Ds
h=kBT /� h is the diffusion coefficient

where only hydrodynamics is accounted for, and Ds
s is equal

to

Ds
s

D0
= 1 − 	iso,�,�

s � , �51�

where

	iso
s =

2

3�
�1 +

2a

D
�2

,

	�
s =

2

3�
�1 +

2a

D
�2

�1 − S� ,

	�
s =

2

3�
�1 +

2a

D
�2�1 +

1

2
S� , �52�

for diffusion in an isotropic network and a nematic network
parallel and perpendicular to the director, respectively. The
diffusion coefficient Ds

s is the diffusion coefficient that incor-
porates shadowing �the superscript s stands for “shadow-
ing”�. Since direct interactions with just a single rod are in-

dependently added, the results in Eqs. �51� and �52� must be
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regarded as the first term in an expansion with respect to the
volume fraction � of rods.

For the fd networks for which experiments will be dis-
cussed later in this paper, typical volume fractions are of the
order 0.01. Putting in numbers in the numerators in Eq. �51�
with 2a /D of order 1 then reveals that the shadowing effect
is very small. For larger tracer spheres, for which typically
2a /D=10, the shadowing effect becomes relevant.

C. Theoretical summary

It follows from Eqs. �50�, �26�, and �51� that the self-
diffusion coefficient Ds, where both hydrodynamic interac-
tions and shadowing are accounted for, is equal to

Ds

D0
=

1

1 + 	iso,�,�
h �

1

1 + 	iso,�,�
s �

. �53�

Here, the coefficient 	h accounts for screened hydrodynamic
interactions and 	s accounts for the shadowing effect. The
coefficient 	h is given in Eq. �29�, which value depends on
whether an isotropic or nematic network with diffusion par-
allel or perpendicular to the director is considered. The co-
efficient 	s is given in Eq. �52�. Here, we have written 1
−	s� for convenience as 1/ �1+	s��, which is allowed due
to the small numerical value of 	s�. The main rod-
concentration dependence of the self-diffusion coefficient
originates from hydrodynamic interactions.

The hydrodynamic-interaction coefficient 	h depends on
the aspect ratio p=L /D of the rods, the size ratio q=2a /L of
the diameter of the tracer sphere and the length of the rods,
and on the orientational order parameter S of the network
through the orientational probability density function in Eq.
�29�. In addition, 	h depends sensitively on the screening
length 1/�. Hence,

	iso,�,�
h � 	h�p,q,�−1/L,S� . �54�

The shadowing coefficient 	s is, according to Eq. �52� a
function of 2a /D=q / p and S,

	iso,�,�
s � 	s�q/p,S� . �55�

The parameters p and q as well as the orientational order
parameter S can be measured independently. The unknown
quantity is the hydrodynamic screening length.

As far as we know, there is no independent theory for the
screening length of networks of very long and thin rods. As a
first attempt one might consider a self-consistent calculation
of the screening length, which is given in Appendix C. It
turns out that at a somewhat higher fd concentration, the
self-consistent screening length becomes of the order of the
thickness of the rod, where the concept of screening breaks
down. Comparing the above theory directly with experi-
ments, however, leads to much larger screening length �see
Sec. IV�. The probable reason for the failure of a self-
consistent calculation is probably that the hydrodynamic
field that a rod experiences is never homogeneous over its
whole length. A simple calculation of the friction coefficient
of a rod in an otherwise quiescent �screened� fluid is there-

fore unrealistic.
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The most severe approximation for nematic networks is
the neglect of the anisotropy of screening. The argument
given before is that hydrodynamic interactions are most pro-
nounced in directions in which the tracer sphere is pulled
through the network. To really quantify the effect of aniso-
tropic screening, the corresponding Debye-Büche-Brinkman
equation should be solved explicitly. So far this has not been
done.

Finally we will show that the long-time self-diffusion
coefficient is relevant for the mass transport of small spheres
through a network, provided that the network is not distorted
by the presence of the small sphere. Consider a homoge-
neous suspension of rods in which spherical particles are
dispersed with a small concentration gradient. When the con-
centration of dispersed spheres is very small, so that they do
not interact with each other, the only force a tracer sphere
experiences is the Brownian force, −kBT���r , t� �where kB is
Boltzmann’s constant, T is the temperature, and ��r , t� is the
number concentration of spheres at point r at time t�. Replac-
ing the external force in Eq. �2� by the Brownian force, the
ensemble-averaged translational velocity vp�r , t� of a sphere
at position r at time t is thus found to be equal to, vp�r , t�
=−Ds���r , t�. Substitution of this result into the continuity
equation, ���r , t� /�t=−� · �vp�r , t���r , t��, immediately leads
to Fick’s diffusion equation,

�

�t
��r,t� = Ds�

2��r,t� .

The gradient diffusion constant for mass transport of tracer
spheres in homogeneous networks of rods is thus equal to the
long-time self-diffusion coefficient of the spheres. This result
relies on the assumption that the rod concentration is uni-
form. The long-time self-diffusion coefficient is thus relevant
for mass transport of spheres through homogeneous net-
works of rods.

III. THE COLLOIDAL SYSTEMS AND SAMPLE
PREPARATION

The bacteriophage fd is a rodlike molecule with a con-
tour length of L=880 nm, a bare diameter of D=6.6 nm, a
persistence length of P=2200 nm, a molecular weight of
M =1.64�107 g/mol, and a maximum charge density of
10 e /nm in water at pH=8.15.48 The fd virus was grown and
purified following standard biological protocols49 using the
XL1blue strain of E. coli as the host bacteria. The standard
yield is ca. 15 mg of fd per liter of infected bacteria, and
virus is typically grown in 6 l batches. The virus particles
were finally purified by repeated centrifugation �105 g for
5 h� and redispersed in a 20 mM tris-HCl buffer at pH 8.15
with 100 mM NaCl to screen the electrostatic interactions.
The buffer contributes about 10 mM to the total ionic
strength.

Apoferritin is used as a tracer sphere. Ferritin is an iron
storage protein, which is found in a variety of animals. It
consists of a protein shell surrounding a ferrous core. This
protein shell of ferritin is called apoferritin �molecular
weight �MW�, 450–475 kD�. Apoferritin consists of 24 pep-

tide subunits joined through noncovalent interactions. The
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apoferritin shell carries a net negative charge at neutral pH
which ensures its excellent solubility in water. From the
point of view of colloid science, apoferritin is a very nice
monodisperse model system of small and spherically shaped
particles which, under proper conditions, can acquire a high
surface charge density. Apoferritin solutions are perfectly
monodisperse and relatively stable, i.e., for weeks at room
temperature and even for months at 4 °C. Apoferritin from
horse spleen was purchased from SIGMA. The concentration
of this sample was approximately 51 mg/ml, the sodium salt
content was approximately 100 mM. Apoferritin was fluo-
rescently labeled with 5�6� TAMRA-SE �5�6� carboxytetram-
ethylrhodamine, succinimidyl ester�-Sigma-Aldrich, Product
number C4759, Lot 100k1600. The dye was connected to the
N terminus of the protein chain using a standard procedure.
After labeling, apoferritin-TAMRA was purified from the
free dye by dialysis using 10 kD filters �millipore “ul-
trafree”� and centrifuged at 7500 g. There are several litera-
ture values for the size of apoferritin �see, for example, Refs.
50–55�. From these literature values we decided to use in our
calculations a diameter of 12.8 nm. Literature values vary
within about ±1 nm from this value.

In order to be able to perform FCS measurements on
nematic samples, homemade cuvettes were used with thick-
nesses of 100–120 �m. This ensures that the nematic direc-
tor can be kept uniform over the thickness of the sample
during a FCS measurement. The optical quality of capillaries
turned out to be not good enough to ensure reproducible
confocal volumes. Cover-glass optical quality is needed to
render the confocal volume appropriately defined. A piece of
parafilm with a circular hole in the middle of about 7 mm
diameter was firmly pressed onto a microscope glass slide, as
depicted in Fig. 5. The parafilm has thicknesses of
100–120 �m. A drop of the sample with a volume of about
2 �l is then carefully positioned in the middle of the circular
hole. The sample should not touch the parafilm. A cover
glass with a thickness of about 80 �m is then pressed upon
this drop and the surrounding parafilm. The drop touches the
cover glass, so that the sample volume is a circular slice of
liquid confined between two glass surfaces. The cover glass
is hold in place by tape that is wrapped around the sides of
the microscope glass slide and the cover glass. During a
measurement, the cover glass is on the down side, where the
objective of the confocal microscope is positioned. We used
a water immersion objective �63� /1.2 W Korr Water Im-
mersion Zeiss� and focused from below into the middle of

FIG. 5. Construction of the cuvette which enables FCS measurements of
nematic samples. The construction is described in detail in the main text.
the sample. Other methods that we tried to ensure a stable
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drop position failed. In obtaining data for the nematic state,
the sample was exposed to a magnetic field of about 2 T for
10 min just before a FCS measurement. The polydomain
structure of the sample is then transformed to a monodomain
over the entire sample volume. The nematic director is cho-
sen parallel to the cover glass. The measurement is done in
the absence of the magnetic field, where the monodomain
structure survives for about 1 /2 h. The degree of orienta-
tional order is not affected by the magnetic pretreatment of
the sample, since orientational order relaxes relatively fast as
a result of local orientational diffusion of rods. The orienta-
tion of the nematic director relative to the confocal volume is
depicted in Fig. 7.

IV. EXPERIMENTAL RESULTS

In this section, FCS results will be presented together
with a calculation of the concentration dependence of the
hydrodynamic screening length from the experimental data
using the theory described above. It is a nontrivial matter to
extract diffusion coefficients from FCS data of apoferritin in
fd suspensions, since fd-virus particles fluoresces by itself to
some extent. Section IV A describes the procedure used to
extract diffusion coefficients from FCS data on these mix-
tures, both for isotropic and nematic fd suspensions. In Sec.
IV B the experimental data for the long-time self-diffusion
coefficient of apoferritin are presented and the concentration
dependence of the hydrodynamic screening length is deter-
mined from these data using the theory described above.

A. Fluorescence correlation spectroscopy
„FCS…
on tracer spheres in isotropic and nematic
fd-virus suspensions

The standard form of a correlation function Cf�t� mea-
sured with FCS from a single-component solution of small
spherical particles, at times larger than about 10 �s where
triplet contributions are absent, reads

Cf
0 � �1 +

Dst

�1
2 −1�1 +

Dst

�2
2 −1/2

, �56�

where Ds is the long-time self-diffusion coefficient of the
spherical particles. The superscript 0 refers to the standard
form. Furthermore �1 and �2 are the linear dimensions of the
confocal volume, perpendicular and parallel to the propaga-
tion direction of the laser beam. These dimensions are de-
fined through the Gaussian intensity distribution I0�r� within
the confocal volume as

I0�r� � exp�− �x2 + y2�/2�1
2�exp�− z2/2�2

2� , �57�

where the z direction is chosen as the propagation direction
of the laser beam. Typically, �1�200 nm and �2�900 nm.

For later reference, we shall rewrite Eq. �56� as

Cf
0�t
�� � �1 +

t

�
−1�1 +

1

S2

t

�
−1/2

, �58�
where the relaxation time � is equal to
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� = �1
2/Ds, �59�

and the so-called structure parameter S=�2 /�1 is found from
measurements on solutions of free rhodamine to be equal to

S = �2/�1 = 4.80 ± 0.05. �60�

Note that the last factor in Eq. �58� relates to diffusion in the
propagation direction of the laser beam, while the first factor
is related to diffusion in the two perpendicular directions. For
a mixture of small spherical, fluorescent, noninteracting
spheres, the measured fluorescence correlation function is the
sum of functions of the form �56�, with the corresponding
relaxation times for the various species.

When the fluorescent spherical particles are not very
small compared with the linear dimensions of the confocal
volume, both �1 and �2 should be replaced by larger “effec-
tive” dimensions, which will change the value of the struc-
ture parameter.31 This is due to the fact that when the rim of
a particle enters the confocal volume, but its center is still
outside, it will already contribute to the detected fluorescent
intensity. The apoferritin particles used in the present study
are small enough to neglect this effective increase of the
confocal dimensions.

A complication with FCS experiments on mixtures of
proteins and fd virus is that the nonspherical fd-virus par-
ticles themselves contribute slightly to the fluorescent inten-
sity. The many proteins attached to the fd-virus particle prob-
ably fluoresce to some extent. In addition, a small amount of
molecular impurity is present in our fd suspensions that con-
tributes a small fraction to the total intensity. These two con-
tributions have to be accounted for when interpreting FCS
data on tracer solutions of protein in host suspensions of fd
virus. Depending on whether the fd suspension is isotropic or
nematic, the contributions other than that arising from the
tracer protein are different. We shall discuss both in the fol-
lowing subsections.

1. Isotropic suspensions

The molecular impurity in our fd suspensions mentioned
above can be simply accounted for by an additional term in
the correlation function of the standard form Cf

0�t 
�i� in Eq.
�58�, where �i is the relaxation time of the impurity. The
contribution of fd-virus particles is much more complicated
for two reasons. First of all, fd virus is a nonspherical par-
ticle with a length �1 �m� that is larger than the linear di-
mensions of the confocal volume, so that rotational dynamics
might affect the fluorescence correlation function. Secondly,
the effective linear dimensions of the confocal volume are
larger than its geometrical dimensions, since again, fd virus
is longer than the linear dimensions of the confocal volume.
The effective structure parameter is not known. Correlation
functions for fd solutions �without protein� can be written as
a sum of the standard contribution from the molecular impu-
rity and a contribution from fd particles �the superscript b
stands for background and the subscript i stands for impu-

rity�,
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Cf
b�t
A,�1,�2,�i� � ACf

fd�t
�1,�2� + �1 − A�Cf
0�t
�i� , �61�

where A is the contribution of fd particles relative to the
molecular impurity. The following function for the fd contri-
bution to the background correlation function was found to
fit experimental data to high accuracy,

Cf
fd�t
�1,�2� � �1 +

t

�1
−1/2�1 +

t

�2
−1

. �62�

This is the standard form of the correlation function, where
formally, the structure parameter is left as an adjustable pa-
rameter. Although there is no clear physical interpretation of
the relaxation times �1,2, these times probably incorporate
both translational and rotational dynamics of fd particles as
well as the effective structure parameter. The representation
�62� of the contribution of fd particles to the measured cor-
relation function is merely of practical importance in order to
extract the protein contribution from experimental correla-
tion functions. An example of a fit of the correlation function
to Eq. �61� is given in Fig. 6�a�. Here, the concentration of
fd-virus particles is 18.8 mg/ml �the isotropic-nematic bin-
odal concentration is 20 mg/ml�. As can be seen, the fit is
very accurate, and will turn out to be sufficient to extract
diffusion data for proteins from their mixtures with fd. The
fit for this particular concentration gives A=0.21, �i

=38.5 �s, �1=600 �s, and �2=7.0�104 �s. The relaxation
time of the impurity is indeed of the order of what one ex-
pects for a small molecule �for free rhodamine the relaxation
time is equal to 25 �s�.

The correlation function for suspensions with a tracer

FIG. 6. Typical fluorescence correlation functions for pure isotropic fd at a
concentration of 18.8 mg/ml �a� and for the mixture of apoferritin and iso-
tropic fd virus �b�. The solid curves are fits to the functions described in the
main text. The solid curve marked “background” in �b� is the absolute con-
tribution of the pure fd correlation function as plotted in �a� to the correla-
tion function for the mixture.
amount of protein is now given by
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Cf�t� = 1 +
1

N
�ApCf

0�t
�p� + �1 − Ap�Cf
b�t
A,�1,�2,�i�� ,

�63�

where Ap and �p are the relative contribution of the tracer
sphere �protein� and its relaxation time, respectively. Here
we added the appropriate base line and the amplitude which
is related to the average number of particles N within the
confocal volume. Once �p is obtained, the long-time self-
diffusion coefficient Ds relative to the Einstein diffusion co-
efficient D0 is calculated from

Ds/D0 = �p
0/�p, �64�

where �p
0 is the relaxation time for dilute solutions of protein

without fd virus as obtained from FCS data fitted to the
standard form �56�.

The quantity �p of interest is thus measured as follows.
First determine the parameters A, �1, �2, and �i, by fitting
correlation functions for fd suspensions �without protein� to
Eqs. �61� and �62�. Add a very small amount of protein and
then fit the correlation function of the mixture to Eq. �63�
with respect to the parameters Ap and �p, keeping A, �1, �2,
and �i fixed to the earlier determined values.

A correlation function with a tracer amount of apoferritin
is given in Fig. 6�b�, again for 18.8 mg/ml, of fd. This result
is obtained by averaging ten correlation functions collected
during 90 s. The relative contribution of protein is typically
Ap=0.80–0.95. The solid line indicates the background con-
tribution to the correlation function from pure fd, as plotted
in Fig. 6�a�. At least four of these results are averaged to give
the final values for diffusion coefficients reported in the
present paper to within an accuracy of about 10%.

2. Nematic suspensions

In our experiments the director is perpendicular to the
propagation direction of the laser beam, as depicted in Fig. 7.
Hence, motion parallel to the director occurs only along the
smaller dimension �1 of the confocal volume, with the cor-
responding diffusion coefficient Ds,�. Motion perpendicular
to the director occurs along the second smaller dimension

FIG. 7. The orientation of the nematic director n̂ relative to the confocal
volume. The propagation direction of the laser beam is along the z axis.
and the larger dimension �2 of the confocal volume, with the
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corresponding diffusion coefficient Ds,�. For diffusion of a
tracer in a nematic suspension, the standard form �56� thus
changes to

Cf
0 � �1 +

Ds,�t

�1
2 −1/2�1 +

Ds,�t

�1
2 −1/2�1 +

Ds,�t

�2
2 −1/2

,

�65�

which is rewritten, analogous to its isotropic counterpart �62�
as

Cf
0�t
��,��� � �1 +

t

��
−1/2�1 +

t

��

−1/2�1 +
1

S2

t

��

−1/2

,

�66�

where the relaxation times are equal to

�� = �1
2/Ds,� and �� = �1

2/Ds,� . �67�

Both contributions to the correlation function for the impu-
rity and the protein are given by this expression with the
appropriate relaxation times �i,�,� and �p,�,�, respectively.

The contribution of fd to the correlation function is
found to be accurately described by the same function �62� as
for isotropic suspensions. The fd contribution is thus charac-
terized by two relaxation times �1 and �2. Again, an interpre-
tation of this representation of the correlation function of
pure fd in terms of physically meaningful quantities would
require a separate study. An example of a fit is given in Fig.
8�a�. Here the concentration of fd is 55.0 mg/ml, which is
far above the concentration of the nematic-isotropic binodal

FIG. 8. Typical fluorescence correlation functions for pure nematic fd at a
concentration of 55.0 mg/ml �a� and for the mixture of apoferritin and nem-
atic fd virus corresponding to diffusion perpendicular to the director �b�. The
solid curves are fits to the functions described in the main text. The solid
curve marked background in �b� is the absolute contribution of the pure fd
correlation function in �a� to the correlation function for the mixture.
�which is located at about 22 mg/ml�. The values for the
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different parameters are, A=0.17, �i,�=1040 �s, �i,�

=24.7 �s, �1=7800 �s, and �2=1.3�105 �s.
An experimental correlation function with a tracer

amount of apoferritin is given in Fig. 8�b�, together with the
fit to Eq. �63� with the appropriate nematic correlation func-
tions as described above. The correlation function is the av-
erage of ten measurements each collected during 90 s. The fd
concentration here is 55.0 mg/ml. The solid line in Fig. 8�b�
indicates the background contribution from pure fd, as plot-
ted in Fig. 8�a�. The relative contribution of protein is typi-
cally Ap=0.80–0.95. Protein relaxation times are obtained in
the same way as described in the previous subsection for
isotropic suspensions.

B. Diffusion coefficients and screening lengths

The experimental long-time self-diffusion coefficient of
apoferritin, as obtained with FCS as a function of the fd-
virus concentration is given in Fig. 9. The vertical dashed
area indicates the isotropic-nematic two-phase region. The
solid lines are sigmoidal fits to the data points. As can be
seen, the diffusion coefficient at the highest concentration in
the isotropic fd network is in between the diffusion coeffi-
cients for diffusion parallel and perpendicular to the director
at the lowest concentration in the nematic network. Diffusion
parallel to the director is faster than diffusion perpendicular
to the director. The same trend has been found in Fig. 3�b�,
where the theoretical prediction for the numerical value of
the coefficient 	�

h is typically larger than 	�
h. The same holds

for the corresponding shadowing coefficients in Eq. �52�. As
mentioned before, typical contributions due to shadowing ef-
fect to the concentration dependence of the diffusion coeffi-
cient are of the order of 1%–2%, and are much smaller than
the hydrodynamic contribution.

Note that in the isotropic state, the mesh-size � of the fd
network can be obtained from56

� = L�c�/c , �68�

where c is the concentration and c�=0.076 mg/ml is the
overlap concentration of fd virus. Even for the highest con-
centrations considered here, the mesh size is considerably

FIG. 9. The self-diffusion coefficient of apoferritin in fd-virus networks in
the isotropic state and the nematic state, both along and perpendicular to the
nematic director as indicated in the figure. The curves are best sigmoidal fits.
The vertical dashed area indicates the isotropic-nematic two-phase region.
larger than the diameter of the apoferritin tracer particles,
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which validates the approximations related to an open net-
work made in the theory in Sec. II.

The hydrodynamic screening length is now obtained
from a comparison of the experimental data in Fig. 9 with
the theoretical predictions in Eqs. �53�, �29�, and �52�. For
each concentration of fd virus, the screening length is chosen
such that the theoretical results for the diffusion coefficient
coincide with the experimental data. The solid lines in Fig.
10 thus correspond to the solid lines in Fig. 9. The error bars
in Fig. 10 are estimated errors in the screening length com-
plying with the experimental error bars in Fig. 9. The screen-
ing length in the isotropic fd networks decreases with in-
creasing fd concentration, as expected, and seems to level off
to a constant at higher concentrations. For neniatic networks
however, the screening length increases with increasing fd
concentration. This counterintuitive result is due to the in-
creasing degree of orientational order on increasing the fd
concentration. Increasing the rod concentration and keeping
the degree of orientational order fixed would lead to a shorter
screening length. Apparently, the increase of the screening
length due to an increase in orientational order is stronger
than its decrease due to an increase of concentration. This
phenomenon is also exhibited by the shear viscosity of lyo-
tropic nematics: the shear viscosity, on first thought unex-
pectedly, decreases on increasing the concentration of a nem-
atic suspension due to the increase of orientational order
�see, for example, Refs. 57 and 58�.

There is as yet no independent theory for the calculation
of the hydrodynamic screening length. The self-consistent
calculation of the screening length as given in Appendix C
only works at low rod concentration but fails at higher con-
centration. The probable reason for this failure is that the
hydrodynamic field that a rod experiences is not homoge-
neous over its whole length.

V. SUMMARY AND CONCLUSION

For diffusion of tracer spheres in networks of rods, there
are two extreme cases to be distinguished, where either the

FIG. 10. The hydrodynamic screening length �−1 in units of the rod length
L as a function of fd concentration in �a� the isotropic fd network and �b� the
nematic network, both in the direction parallel and perpendicular to the
director, as indicated in the figure. The vertical dashed area indicates the
isotropic-nematic two-phase region. The curves are obtained by comparing
the best fits in Fig. 9 to theory. The error bars indicate the uncertainty of the
screening lengths obtained in this way.
diameter of the tracer sphere is large or small compared with
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the mesh size of the network. In the present paper we devel-
oped a theory for diffusion of small tracer spheres in open
networks of isotropic and nematic networks of rods. It is
shown that for such relatively open networks hydrodynamic
interactions are dominant over direct interactions �the “shad-
owing effect”�. Furthermore, hydrodynamic interactions are
screened due to entanglement of the rods in the network.

Fluorescence correlation spectroscopy �FCS� has been
used to probe the long-time self-diffusion coefficient of fluo-
rescently labeled apoferritin in suspensions of fd virus, both
in the isotropic and nematic state. A complication for the data
analysis is that fd virus by itself fluoresces to some extent. A
careful background subtraction is necessary to extract the
diffusion coefficient of apoferritin in these mixtures. A cu-
vette is designed in which a drop of nematic fd-virus suspen-
sion is pinned in between two glass plates. It has been a
nontrivial step in our experiments to find a procedure to fix a
drop of suspension in between two glass plates. A mon-
odomain nematic is prepared by an exposure of the drop to a
magnetic field before a FCS measurement.

Combining the FCS data and the theory, the fd-
concentration dependence of the hydrodynamic screening
length is determined both in the isotropic state and in the
nematic state for diffusion parallel and perpendicular to the
director. As expected, the screening length decreases with
increasing fd concentration in the isotropic state, that is, the
penetration depth of a shear wave is less for a denser net-
work. In the nematic state, however, the screening length
increases with increasing concentration. This is due to the
increase of orientational order as the concentration increases.
Apparently, an increasing degree of orientational order
strongly decreases hydrodynamic screening. A self-
consistent calculation of the screening length predicts similar
features, but is not accurate enough to compare with experi-
ments on a semiquantitative level.
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APPENDIX A: ON THE ACCURACY OF EQUATION
„17…

There are two approximations involved in Eq. �17�: first
of all, the 	 dependence in the bead-index sum in the first
term on the right-hand side of Eq. �16� is neglected, and
secondly, the second term on the right-hand side in Eq. �16�
is neglected against the first term.

The validity of the first approximation is simply verified

by calculating the bead-index sums,
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H1�	� � 	

�	

h1��D
	 − 

�

	 − 



,

H2�	� � 	

�	

h2��D
	 − 

�

	 − 



, �A1�

as functions of 	 for various �small� values of �D, and com-
pare the numerical values with H1�	=0� and H2�	=0�, re-
spectively. The relative difference should be small for the
majority of bead-index numbers 	. As can be seen from Fig.
11, where both H1 and H2 are plotted as functions of 	 for
L /D=51 and 101, this is indeed the case. In calculating sums
with respect to 	 of functions that do not peak at the edges of
the rod, the relative error is of the order of the difference in
area under the solid curves and the corresponding straight
line that marks the value of H1,2 at 	=0. Sums of H1,2 with
respect to 	 differ less than 8% as compared with the area
�2m+1� H1,2�	=0�. Neglecting end effects thus introduces
errors of the order of 10%.

Next consider the neglect of the second term in on the
right-hand side in Eq. �16� with respect to the first term. Note
that it follows from Eq. �22� that, in the absence of hydro-
dynamic screening, the bead forces F


h typically vary like
�1/ 
R /D−
û
. To estimate the accuracy of the neglect of
the second term on the right-hand side of Eq. �16� we shall

FIG. 11. The 	 dependence of the sums H1 ��a� and �c�� and H2 ��b� and �d��
in Eq. �A1� for L /D=51 ��a� and �b�� and L /D=101 ��c� and �d��. The solid
curves in all figures are from bottom to top for �D=1/10, 1 /20, and 1/50.
The horizontal lines indicate the values at 	=0.
therefore compare the sum,
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W = 	

�	

1


R/D − 
û

1



 − 	

, �A2�

with its approximation,

W �
1


R/D − 	û
 	
�	

1



 − 	

, �A3�

which is equivalent with the neglect of the second term in
Eq. �16�. As can be seen from Fig. 12, where W in Eqs. �A2�
�solid lines� and �A3� �dashed lines� are plotted for various
configurations of the tracer sphere relative to the rod, the
relative error in neglecting the second term in Eq. �16� is
good to within about 10%–20% for the calculation of diffu-
sion coefficients: the bead-index number dependence is re-
produced by the approximate form, and absolute differences
are not too large even for close approach of the sphere to the
rod. In addition, hydrodynamic screening will improve the
accuracy of the approximation, since the “screening func-
tions” h1,2��D
	−

� in the screened Oseen tensor peak
around neighboring beads.

APPENDIX B: DERIVATION OF EQUATION „46…

Ensemble averages are calculated with respect to the
probability function P�rp�= �1/V�g, where V is the total vol-
ume of the system under consideration. Since the potential
V=0 for 
z
� 1

2L+a, the ensemble average of the potential
force is thus equal to

��V� =� drp P � V

= �̄�
−�1/2�L−a

�1/2�L+a

dz�
0

�

d� ��
0

2�

d�g��,�� � V��� ,

�B1�

where as before �̄=N /V is the number density of rods. The

FIG. 12. The integral W in Eq. �A2� where the typical force F

h �1/ 
R /D

−
û
 is kept in the sum �solid line�, and W in Eq. �A3� where the force is
taken outside the sum and set equal to F	

h �dashed line�. Three different
configurations are shown in �a�, �b�, and �c�, as depicted above the graphs,
with different distances between the tracer sphere and the rod as indicated
by A, B, C, and D.
ensemble average for a single rod is multiplied here by the
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number of rods N to account for all rods in the system. Sub-
stitution of the expression �45� and using that

� = �̂
�

��
+ �̂

1

�

�

��
, �B2�

where the unit vectors are equal to �̂= �cos��� , sin��� ,0�
and �̂= �−sin��� , cos��� ,0� thus leads to

��V� = − 
Fext��̄L
�a + D/2�1+�

�
�

0

�

d� �1−�

�exp�− 
V����
dV���

d�
, �B3�

where it is used that Fext=−ê1Fext �see Fig. 4�c��. Here, L
+2a is set equal to L, since 2a /L�1. For hard-core interac-
tions we have �with � the delta distribution�

exp�− 
V����
dV���

d�
= − 
−1d exp�− 
V����

d�

= − 
−1��� − a − D/2� . �B4�

Substitution into Eq. �B3� thus gives


��V� = 
Fext��̄L
�a + D/2�2

�
. �B5�

Expressing the number concentration �̄ in terms of the vol-
ume fraction �= �� /4�D2L�̄ of rods leads to the first of the
two expressions in Eq. �46�.

Similarly to Eq. �B1� the ensemble average of the
Brownian force is equal to

�� ln�g�� =� drp P � ln�g�

= �̄�
−�1/2�L−a

�1/2�L+a

dz�
0

�

d� ��
0

2�

d� �g��,�� .

�B6�

Substitution of Eq. �45� for the pair-correlation function,
transforming the differentiation to cylindrical coordinates
�see Eq. �B2��, and using that for hard-core interactions,

d exp�− 
V����
d�

= ��� − a − D/2� , �B7�

it is readily found by a single partial integration that there is
a cancellation of terms in Eq. �B6�, leading to a zero-
ensemble-averaged Brownian force, that is, �� ln�g��=0.

APPENDIX C: A SELF-CONSISTENT CALCULATION
OF THE SCREENING LENGTH

In this Appendix we shall calculate the friction coeffi-
cient � in Eq. �3�, which then identifies the hydrodynamic
screening length �−1 through Eq. �5�. Since the network of
the long and thin rods is very open, hydrodynamic interac-
tions through fields that are multiply reflected by different
rods towards the sphere are neglected. The friction coeffi-
cient � can thus be approximated as the friction coefficient of

a single rod in a Debye-Büche-Brinkman fluid.
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Neglecting end effects, the forces F	
h of bead number 	

on the fluid in an otherwise uniform fluid flow is equal to
F�D /L� for each bead, where F is the total force that a single
rod exerts on the fluid. Since the fluid flow u0 in Eq. �15� is
now a constant u, this “integral equation” reduces to

F

3��0L
+ u +

D

L
	


�	

Ts�Dû�	 − 
�� · F = 0. �C1�

As in the previous subsection, end effects can be neglected
for the long and thin rods under consideration and the bead-
index sum can be rewritten as an integral. Analogous to Eq.
�22� it is found that �for convenience the screening length
dependence of G and H are not denoted here explicitly�

F = −
2��0L

G
�Î −

H

G + H
ûû · u , �C2�

where G and H are defined in Eq. �20�. Orientational aver-
aging with respect to û identifies the effective friction coef-
ficient through Eq. �3� and thereby the hydrodynamic screen-
ing through Eq. �5�. Introducing the tensor

Q = 3
2��ûû� − 1

3 Î� , �C3�

orientational averaging of Eq. �C2� for a given velocity u
leads to �with, for example, G� =G���D ,��L��,

�iso = 2��0L
Giso + �2/3�Hiso

Giso�Giso + Hiso�
,

�� = 2��0L
G� + �2/3�H��1 + �1/2�S�

G��G� + H��
,

�� = 2��0L
G� + �2/3�H��1 − S�

G��G� + H��
, �C4�

where the subscripts “iso,” “�” and “�” refer to the isotropic
state and the nematic state with diffusion parallel and per-
pendicular to the nematic director, respectively. Here, it is
assumed that for diffusion in the nematic state, the most
important contributions originate from scattering where F is
colinear to the velocity field u. Furthermore, S is the largest
eigenvalue of Q, the “scalar orientational order parameter,”
which measures the degree of orientational order. Equation
�5� for the screening length in terms of the friction coefficient
thus leads to the following self-consistent relations,

��isoL�2 = 12
�̄

�̄ �

Giso + �2/3�Hiso

Giso�Giso + Hiso�
,

���L�2 = 12
�̄

�̄ �

G� + �2/3�H��1 + �1/2�S�
G��G� + H��

,

���L�2 = 12
�̄

�̄ �

G� + �2/3�H��1 − S�
G��G� + H��

, �C5�

where the index on � again refers to the type of diffusion and

where
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�̄ � = 6/��L3� �C6�

is the overlap concentration. For fd-virus suspensions the
overlap concentration is 0.076 mg/ml. The binodals for the
isotropic-nematic phase transition are located at 20 and
22 mg/ml, corresponding to �̄ / �̄ �=263 and 303, respec-
tively.

The self-consistency relations �C5� must be solved nu-
merically. As can be seen from Fig. 13 and the experimental
Fig. 10, the numerical values of the self-consistently calcu-
lated screening length agrees with the experiments only for
very low concentration of fd virus. For higher concentrations
in the isotropic state, the screening length becomes of the
order of the diameter of fd virus, where the screening con-
cept obviously breaks down. Furthermore, the screening
lengths in the nematic state for diffusion perpendicular to the
director are similarly of the order of the thickness of the rod,
while for diffusion parallel to the director Eq. �C5� has no
solutions. It thus seems that a self-consistent calculation of
the screening length does not work for the open network
under consideration. The probable reason for this is that the
hydrodynamic field that a rod experiences is never homoge-
neous over its whole length. A simple calculation of the fric-
tion coefficient of a rod in an otherwise quiescent �screened�
fluid is therefore unrealistic.
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