162 research outputs found

    No variations in transit times for Qatar-1 b

    Full text link
    The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are not components of compact multi-planetary systems. Based on dynamical simulations, we place tighter constraints on a mass of any fictitious nearby planet in the system. Furthermore, new transit light curves allowed us to redetermine system parameters with the precision better than that reported in previous studies. Our values generally agree with previous determinations.Comment: Accepted for publication in A&

    Disruption of Endogenous Purinergic Signaling Inhibits Vascular Endothelial Growth Factor- and Glutamate-Induced Osmotic Volume Regulation of Muller Glial Cells in Knockout Mice

    Get PDF
    Background/Aims: Osmotic swelling of Müller cells is a common phenomenon in animal models of ischemic and diabetic retinopathies. Müller cells possess a swelling-inhibitory purinergic signaling cascade which can be activated by various receptor ligands including vascular endothelial growth factor (VEGF) and glutamate. Here, we investigated whether deletion of P2Y1 (P2Y1R) and adenosine A1 receptors (A1AR), and of inositol-1,4,5-trisphosphate-receptor type 2 (IP3R2), in mice affects the inhibitory action of VEGF and glutamate on Müller cell swelling. Methods: The cross-sectional area of Müller cell somata was recorded after a 4-min superfusion of retinal slices with a hypoosmotic solution. Results: Hypoosmolarity induced a swelling of Müller cells from P2Y1R-/-, A1AR-/- and IP3R2-/- mice, but not from wild-type mice. Swelling of wild-type Müller cells was induced by hypoosmotic solution containing barium chloride. Whereas VEGF inhibited the swelling of wild-type Müller cells, it had no swelling-inhibitory effect in cells from A1AR-/- and IP3R2-/- mice. Glutamate inhibited the swelling of wild-type Müller cells but not of cells from P2Y1R-/-, A1AR-/- and IP3R2-/- animals. Conclusion: The swelling-inhibitory effects of VEGF and glutamate in murine Müller cells is mediated by transactivation of P2Y1R and A1AR, as well as by intracellular calcium signaling via activation of IP3R2

    Does music quality matter for audience voters in a music contest

    Get PDF
    There are numerous studies analyzing factors of success in media-broadcasted artistic contests, especially music competitions. However, one factor that is generally neglected in the literature is the quality of the artistic performances (i.e. “music quality”). In this paper, we approach this research gap by developing two novel concepts of music quality and by employing unique measures during the empirical analysis of a popular German music television contest in order to analyze how different dimensions of the music and performance quality influences the final voting results. We use the complete historical voting dataset of the music contest from its inception in 2005 until its last broadcast in 2015, collecting 2,816 observations in total. First, we define dimensions of “objective quality” according to insights from musicological research/literature. Second, we conceptualize dimensions of “subjective quality” because music preferences may be subjective and are not necessarily based on how experts’ define “good” music. We measure these subjective dimensions in an experimental setting with students from two German universities. Our analysis shows that different quality dimensions affect the outcome of voting results in different ways and not all quality dimensions reveal themselves as significant. In general, subjective quality dimensions turn out to be more relevant than objective ones. The differentiated results of our analysis support the value of our approach to deconstruct quality into different dimensions and test them individually

    Genetic Deletion of Laminin Isoforms β2 and γ3 Induces a Reduction in Kir4.1 and Aquaporin-4 Expression and Function in the Retina

    Get PDF
    Glial cells such as retinal Müller glial cells are involved in potassium ion and water homeostasis of the neural tissue. In these cells, inwardly rectifying potassium (Kir) channels and aquaporin-4 water channels play an important role in the process of spatial potassium buffering and water drainage. Moreover, Kir4.1 channels are involved in the maintenance of the negative Müller cell membrane potential. The subcellular distribution of Kir4.1 and aquaporin-4 channels appears to be maintained by interactions with extracellular and intracellular molecules. Laminins in the extracellular matrix, dystroglycan in the membrane, and dystrophins in the cytomatrix form a complex mediating the polarized expression of Kir4.1 and aquaporin-4 in Müller cells.The aim of the present study was to test the function of the β2 and γ3 containing laminins in murine Müller cells. We used knockout mice with genetic deletion of both β2 and γ3 laminin genes to assay the effects on Kir4.1 and aquaporin-4. We studied protein and mRNA expression by immunohistochemistry, Western Blot, and quantitative RT-PCR, respectively, and membrane currents of isolated cells by patch-clamp experiments. We found a down-regulation of mRNA and protein of Kir4.1 as well as of aquaporin-4 protein in laminin knockout mice. Moreover, Müller cells from laminin β2 and γ3 knockout mice had reduced Kir-mediated inward currents and their membrane potentials were more positive than those in age-matched wild-type mice.These findings demonstrate a strong impact of laminin β2 and γ3 subunits on the expression and function of both aquaporin-4 and Kir4.1, two important membrane proteins in Müller cells

    Functional Implication of Dp71 in Osmoregulation and Vascular Permeability of the Retina

    Get PDF
    Functional alterations of Müller cells, the principal glia of the retina, are an early hallmark of most retina diseases and contribute to their further progression. The molecular mechanisms of these reactive Müller cell alterations, resulting in disturbed retinal homeostasis, remain largely unknown. Here we show that experimental detachment of mouse retina induces mislocation of the inwardly rectifying potassium channels (Kir4.1) and a downregulation of the water channel protein (AQP4) in Müller cells. These alterations are associated with a strong decrease of Dp71, a cytoskeleton protein responsible for the localization and the clustering of Kir4.1 and AQP4. Partial (in detached retinas) or total depletion of Dp71 in Müller cells (in Dp71-null mice) impairs the capability of volume regulation of Müller cells under osmotic stress. The abnormal swelling of Müller cells In Dp71-null mice involves the action of inflammatory mediators. Moreover, we investigated whether the alterations in Müller cells of Dp71-null mice may interfere with their regulatory effect on the blood-retina barrier. In the absence of Dp71, the retinal vascular permeability was increased as compared to the controls. Our results reveal that Dp71 is crucially implicated in the maintenance of potassium homeostasis, in transmembraneous water transport, and in the Müller cell-mediated regulation of retinal vascular permeability. Furthermore, our data provide novel insights into the mechanisms of retinal homeostasis provided by Müller cells under normal and pathological conditions

    Transit Timing Analysis in the HAT-P-32 System

    Full text link
    We present the results of 45 transit observations obtained for the transiting exoplanet HATP- 32b. The transits have been observed using several telescopes mainly throughout the YETI (Young Exoplanet Transit Initiative) network. In 25 cases, complete transit light curves with a timing precision better than 1.4 min have been obtained. These light curves have been used to refine the system properties, namely inclination i, planet-to-star radius ratio Rp/Rs, and the ratio between the semimajor axis and the stellar radius a/Rs. First analyses by Hartman et al. suggests the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also the literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21 ms. Thus, we can exclude TTV amplitudes of more than ∼1.5min

    Transit Timing Analysis in the HAT-P-32 system

    Get PDF
    We present the results of 45 transit observations obtained for the transiting exoplanet HAT-P-32b. The transits have been observed using several telescopes mainly throughout the YETI network. In 25 cases, complete transit light curves with a timing precision better than 1.41.4\:min have been obtained. These light curves have been used to refine the system properties, namely inclination ii, planet-to-star radius ratio Rp/RsR_\textrm{p}/R_\textrm{s}, and the ratio between the semimajor axis and the stellar radius a/Rsa/R_\textrm{s}. First analyses by Hartman et al. (2011) suggest the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we can exclude TTV amplitudes of more than 1.5\sim1.5min.Comment: MNRAS accepted; 13 pages, 10 figure

    Ectonucleotidases in Müller glial cells of the rodent retina: Involvement in inhibition of osmotic cell swelling

    Get PDF
    Extracellular nucleotides mediate glia-to-neuron signalling in the retina and are implicated in the volume regulation of retinal glial (Müller) cells under osmotic stress conditions. We investigated the expression and functional role of ectonucleotidases in Müller cells of the rodent retina by cell-swelling experiments, calcium imaging, and immuno- and enzyme histochemistry. The swelling of Müller cells under hypoosmotic stress was inhibited by activation of an autocrine purinergic signalling cascade. This cascade is initiated by exogenous glutamate and involves the consecutive activation of P2Y1 and adenosine A1 receptors, the action of ectoadenosine 5′-triphosphate (ATP)ases, and a nucleoside-transporter-mediated release of adenosine. Inhibition of ectoapyrases increased the ATP-evoked calcium responses in Müller cell endfeet. Müller cells were immunoreactive for nucleoside triphosphate diphosphohydrolases (NTPDase)2 (but not NTPDase1), ecto-5′-nucleotidase, P2Y1, and A1 receptors. Enzyme histochemistry revealed that ATP but not adenosine 5′-diphosphate (ADP) is extracellularly metabolised in retinal slices of NTPDase1 knockout mice. NTPDase1 activity and protein is restricted to blood vessels, whereas activity of alkaline phosphatase is essentially absent at physiological pH. The data suggest that NTPDase2 is the major ATP-degrading ectonucleotidase of the retinal parenchyma. NTPDase2 expressed by Müller cells can be implicated in the regulation of purinergic calcium responses and cellular volume

    Clinical experience in T cell deficient patients

    Get PDF
    T cell disorders have been poorly understood until recently. Lack of knowledge of underlying molecular mechanisms together with incomplete data on long term outcome have made it difficult to assess prognosis and give the most effective treatment. Rapid progress in defining molecular defects, improved supportive care and much improved results from hematopoietic stem cell transplantation (HSCT) now mean that curative treatment is possible for many patients. However, this depends on prompt recognition, accurate diagnosis and careful treatment planning

    Long-term photometry of IC 348 with the Young Exoplanet Transit Initiative network

    Get PDF
    We present long-term photometric observations of the young open cluster IC 348 with a baseline time-scale of 2.4 yr. Our study was conducted with several telescopes from the Young Exoplanet Transit Initiative (YETI) network in the Bessel R band to find periodic variability of young stars. We identified 87 stars in IC 348 to be periodically variable; 33 of them were unreported before. Additionally, we detected 61 periodic non-members of which 41 are new discoveries. Our wide field of view was the key to those numerous newly found variable stars. The distribution of rotation periods in IC 348 has always been of special interest. We investigate it further with our newly detected periods but we cannot find a statistically significant bimodality. We also report the detection of a close eclipsing binary in IC 348 composed of a low-mass stellar component (M ≳ 0.09 M⊙) and a K0 pre-main-sequence star (M ≈ 2.7 M⊙). Furthermore, we discovered three detached binaries among the background stars in our field of view and confirmed the period of a fourth one
    corecore