5 research outputs found

    Equilibration and Dynamic Phase Transitions of a Driven Vortex Lattice

    Full text link
    We report on the observation of two types of current driven transitions in metastable vortex lattices. The metastable states, which are missed in usual slow transport measurements, are detected with a fast transport technique in the vortex lattice of undoped 2H-NbSe2_2. The transitions are seen by following the evolution of these states when driven by a current. At low currents we observe an equilibration transition from a metastable to a stable state, followed by a dynamic crystallization transition at high currents.Comment: 5 pages, 4 figure

    The magnetization of PrFeAsO0.60_{0.60}F$_{0.12} sueprconductor

    Full text link
    The magnetization of the PrFeAsO0.60_{0.60}F0.12_{0.12} polycrystalline sample has been measured as functions of temperature and magnetic field (H)(H). The observed total magnetization is the sum of a superconducting irreversible magnetization (MsM_s) and a paramagnetic magnetization (MpM_p). Analysis of dc susceptibility χ(T)\chi(T) in the normal state shows that the paramagnetic component of magnetization comes from the Pr+3^{+3} magnetic moments. The intragrain critical current density (JL)(J_L) derived from the magnetization measurement is large. The JL(H)J_L(H) curve displays a second peak which shifts towards the high-field region with decreasing temperature. In the low-field region, a plateau up to a field HH^* followed by a power law H5/8H^{-5/8} behavior of JL(H)J_L(H) is the characteristic of the strong pinning. A vortex phase diagram for the present superconductor has been obtained from the magnetization and resistivity data.Comment: A revised version with modified title,8 pages, 7 figure

    Phase Behavior of Type-II Superconductors with Quenched Point Pinning Disorder: A Phenomenological Proposal

    Full text link
    A general phenomenology for phase behaviour in the mixed phase of type-II superconductors with weak point pinning disorder is outlined. We propose that the ``Bragg glass'' phase generically transforms via two separate thermodynamic phase transitions into a disordered liquid on increasing the temperature. The first transition is into a glassy phase, topologically disordered at the largest length scales; current evidence suggests that it lacks the long-ranged phase correlations expected of a ``vortex glass''. This phase has a significant degree of short-ranged translational order, unlike the disordered liquid, but no quasi-long range order, in contrast to the Bragg glass. This glassy phase, which we call a ``multi-domain glass'', is confined to a narrow sliver at intermediate fields, but broadens out both for much larger and much smaller field values. The multi-domain glass may be a ``hexatic glass''; alternatively, its glassy properties may originate in the replica symmetry breaking envisaged in recent theories of the structural glass transition. Estimates for translational correlation lengths in the multi-domain glass indicate that they can be far larger than the interline spacing for weak disorder, suggesting a plausible mechanism by which signals of a two-step transition can be obscured. Calculations of the Bragg glass-multi-domain glass and the multi-domain glass-disordered liquid phase boundaries are presented and compared to experimental data. We argue that these proposals provide a unified picture of the available experimental data on both high-Tc_c and low-Tc_c materials, simulations and current theoretical understanding.Comment: 70 pages, 9 postscript figures, modified title and minor changes in published versio

    Mycosis fungoides

    No full text
    corecore