18,889 research outputs found
Split-gate quantum point contacts with tunable channel length
We report on developing split-gate quantum point contacts (QPCs) that have a
tunable length for the transport channel. The QPCs were realized in a
GaAs/AlGaAs heterostructure with a two- dimensional electron gas (2DEG) below
its surface. The conventional design uses 2 gate fingers on the wafer surface
which deplete the 2DEG underneath when a negative gate voltage is applied, and
this allows for tuning the width of the QPC channel. Our design has 6 gate
fingers and this provides additional control over the form of the electrostatic
potential that defines the channel. Our study is based on electrostatic
simulations and experiments and the results show that we developed QPCs where
the effective channel length can be tuned from about 200 nm to 600 nm.
Length-tunable QPCs are important for studies of electron many-body effects
because these phenomena show a nanoscale dependence on the dimensions of the
QPC channel
XTE J1550-564: INTEGRAL Observations of a Failed Outburst
The well known black-hole X-ray binary transient XTE J1550-564 underwent an
outburst during the spring of 2003 which was substantially underluminous in
comparison to previous periods of peak activity in that source. In addition,
our analysis shows that it apparently remained in the hard spectral state over
the duration of that outburst. This is again in sharp contrast to major
outbursts of that source in 1998/1999 during which it exhibited an irregular
light curve, multiple state changes and collimated outflows. This leads us to
classify it as a "failed outburst." We present the results of our study of the
spring 2003 event including light curves based on observations from both
INTEGRAL and RXTE. In addition, we studied the evolution of the high-energy
3-300 keV continuum spectrum using data obtained with three main instruments on
INTEGRAL. These spectra are consistent with typical low-hard-state thermal
Comptonization emission. We also consider the 2003 event in the context of a
multi-source, multi-event period-peak luminosity diagram in which it is a clear
outlyer. We then consider the possibility that the 2003 event was due to a
discrete accretion event rather than a limit-cycle instablility. In that
context, we apply model fitting to derive the timescale for viscous propagation
in the disk, and infer some physical characteristics.Comment: 22 pages, 8 figures, to be published in The Astrophysical Journa
Reflection of light from a disordered medium backed by a phase-conjugating mirror
This is a theoretical study of the interplay of optical phase-conjugation and
multiple scattering. We calculate the intensity of light reflected by a
phase-conjugating mirror when it is placed behind a disordered medium. We
compare the results of a fully phase-coherent theory with those from the theory
of radiative transfer. Both methods are equivalent if the dwell time
\tau_{dwell} of a photon in the disordered medium is much larger than the
inverse of the frequency shift 2\Delta\omega acquired at the phase-conjugating
mirror. When \tau_{dwell} \Delta\omega < 1, in contrast, phase coherence
drastically affects the reflected intensity. In particular, a minimum in the
dependence of the reflectance on the disorder strength disappears when
\Delta\omega is reduced below 1/\tau_{dwell}. The analogies and differences
with Andreev reflection of electrons at the interface between a normal metal
and a superconductor are discussed.Comment: 27 pages RevTeX with 11 figures included with psfi
Quartic double solids with ordinary singularities
We study the mixed Hodge structure on the third homology group of a threefold
which is the double cover of projective three-space ramified over a quartic
surface with a double conic. We deal with the Torelli problem for such
threefolds.Comment: 14 pages, presented at the Conference Arnol'd 7
Shot noise in ferromagnet--normal metal systems
A semiclassical theory of the low frequency shot noise in ferromagnet -
normal metal systems is formulated. Non-collinear magnetization directions of
the ferromagnetic leads, arbitrary junctions and the elastic and inelastic
scattering regimes are considered. The shot noise is governed by a set of
mesoscopic parameters that are expressed in terms of the microscopic details of
the junctions in the circuit. Explicit results in the case of ballistic,
tunnel, and diffusive junctions are evaluated. The shot noise, the current and
the Fano factor are calculated for a double barrier ferromagnet - normal metal
- ferromagnet system. It is demonstrated that the shot noise can have a
non-monotonic behavior as a function of the relative angle between the
magnetizations of the ferromagnetic reservoirs.Comment: 17 pages, 7 figure
Table of Contents
Table of contents for Volume 10, Issue 3 of the Linfield Magazin
Radiative Transfer in Obliquely Illuminated Accretion Disks
The illumination of an accretion disk around a black hole or neutron star by
the central compact object or the disk itself often determines its spectrum,
stability, and dynamics. The transport of radiation within the disk is in
general a multi-dimensional, non-axisymmetric problem, which is challenging to
solve. Here, I present a method of decomposing the radiative transfer equation
that describes absorption, emission, and Compton scattering in an obliquely
illuminated disk into a set of four one-dimensional transfer equations. I show
that the exact calculation of the ionization balance and radiation heating of
the accretion disk requires the solution of only one of the one-dimensional
equations, which can be solved using existing numerical methods. I present a
variant of the Feautrier method for solving the full set of equations, which
accounts for the fact that the scattering kernels in the individual transfer
equations are not forward-backward symmetric. I then apply this method in
calculating the albedo of a cold, geometrically thin accretion disk.Comment: 16 pages, 3 figures; to appear in The Astrophysical Journa
X-Ray and Infrared Enhancement of Anomalous X-ray Pulsar 1E 2259+58
The long term (~1.5 years) X-ray enhancement and the accompanying infrared
enhancement light curves of the anomalous X-ray pulsar 1E 2259+58 following the
major bursting epoch can be accounted for by the relaxation of a fall back disk
that has been pushed back by a gamma-ray flare. The required burst energy
estimated from the results of our model fits is low enough for such a burst to
have remained below the detection limits. We find that an irradiated disk model
with a low irradiation efficiency is in good agreement with both X-ray and
infrared data. Non-irradiated disk models also give a good fit to the X-ray
light curve, but are not consistent with the infrared data for the first week
of the enhancement.Comment: 17 pages, 3 figures, accepted for publication in Ap
Схеми скорочення необхідного об'єму вимірювань у методі контролю стаціонарної підйомної установки
Предлагается последовательная процедура принятия решения относительно вектора характеристик контролируемой стационарной подъемной установки, которая является некоторым обобщением процедуры Вальда и позволяет получить выигрыш в среднем объеме испытаний, аналогичный обычному «вальдовскому» выигрышу для случая двух гипотез. Предлагаемая последовательная процедура позволяет учитывать дополнительную информацию и за счет этого получить добавочный выигрыш в объеме контроля стационарной подъемной установки.Offers a consistent decision-making procedure for the vector characteristics of the controlled stationary hoist, which is a generalization of Wald's procedure and provides a gain in the average volume of tests, similar to the usual "of Wald's" winning the case of two hypotheses. The proposed sequential procedure takes into account the additional information
and thereby obtain additional gains in the amount of control a stationary hoist
- …