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We report on developing split-gate quantum point contacts (QPCs) that have a tunable length

for the transport channel. The QPCs were realized in a GaAs/AlGaAs heterostructure with a

two-dimensional electron gas (2DEG) below its surface. The conventional design uses 2 gate

fingers on the wafer surface which deplete the 2DEG underneath when a negative gate voltage is

applied, and this allows for tuning the width of the QPC channel. Our design has 6 gate fingers and

this provides additional control over the form of the electrostatic potential that defines the channel.

Our study is based on electrostatic simulations and experiments and the results show that we

developed QPCs where the effective channel length can be tuned from about 200 nm to 600 nm.

Length-tunable QPCs are important for studies of electron many-body effects because these

phenomena show a nanoscale dependence on the dimensions of the QPC channel. VC 2013

American Institute of Physics. [http://dx.doi.org/10.1063/1.4774281]

I. INTRODUCTION

A quantum point contact (QPC) is the simplest meso-

scopic device that directly shows quantum mechanical prop-

erties. It is a short ballistic transport channel between two

electron reservoirs, which shows quantized conductance as a

function of the width of the channel.1,2 A widely applied

approach for implementing QPCs is using a split-gate struc-

ture on the surface of a heterostructure with a two-

dimensional electron gas (2DEG) at about 100 nm beneath

its surface. The conventional design of such a split-gate QPC

has two metallic gate fingers (Fig. 1(a)). Operating this de-

vice with a negative gate voltage Vg results in the formation

of a barrier with a small tunable opening between two 2DEG

reservoirs, because the 2DEG below the gate fingers gets

depleted over a range that depends on Vg. For electrons in

the 2DEG, this appears as an electrostatic potential U that is

a large barrier with a small opening in the form of a saddle-

point potential (Fig. 3). The saddle-point potential gives

transverse confinement in the channel that is roughly para-

bolic, which results for this transverse direction in a discrete

set of electronic energy levels. For electron transport along

the channel, this gives a discrete set of subbands with one-

dimensional character. Quantized conductance appears

because each subband contributes G0 ¼ 2e2=h to the chan-

nel’s conductance,1,2 where e is the electron charge and h is

Planck’s constant.

We present here the design and experimental characteri-

zation of QPCs which offer additional control over the shape

of the saddle-point potential. We focused on developing

devices for which the effective length of the saddle-point

potential (along the transport direction) can be tuned in situ.

The additional control is implemented with a symmetric

split-gate design based on 6 gate fingers (Fig. 1(b)). Such

devices will be denoted as QPC6F and conventional devices

with 2 gate fingers (Fig. 1(a)) as QPC2F. These QPC6F are

operated with the gate voltage on the outer fingers (Vg2) less

negative than the gate voltage on the central fingers (Vg1) to

avoid quantum dot formation. Sweeping Vg1 from more to

less negative values opens the QPC6F. By co-sweeping Vg2 at

fixed ratio Vg2=Vg1 it behaves as a QPC with a certain length

for the saddle-point potential, and this length can be chosen

by setting Vg2=Vg1: It is shortest for Vg2=Vg1 � 0 and longest

for Vg2=Vg1/1. For our design, the effective length could be

tuned from about 200 nm to 600 nm.

The motivation for developing these length-tunable

QPCs comes from studies of electron many-body effects in

QPCs. A well-known manifestation of these many-body

effects is the so-called 0.7 anomaly,3 which is an additional

shoulder at 0:7G0 in quantized conductance traces. These

many-body effects are, despite many experimental and theo-

retical studies since 1996,4 not yet fully understood. Recent

theoretical work5 suggested that many-body effects cause

the formation of one or more self-consistent localized states

in the QPC channel, and that these effects result in the 0.7

anomaly and the other signatures of many-body physics.

This theoretical work predicted a clear dependence on the

length of the QPC channel, and testing this directly requires

experiments where this length is varied.

The work by Koop et al.6 already explored the relation

between the device geometry and parameters that describe

the many-body effects in a large set of QPC2F devices. This

work compared nominally identical devices, and devices for

which the lithographic length Llitho (see Fig. 1(a)) and width

of the channel in the split-gate structure were varied. These

results were, however, not conclusive. The parameters that

describe the many-body effects showed large, seemingly ran-

dom variation, not correlated with the device geometry. At

the same time, the devices showed (besides the 0.7 anomaly)

clean quantized conductance traces, and the parameters that

reflect the non-interacting electron physics did show the vari-

ation that one expects when changing the geometry (fora)e-mail: javaid2k@gmail.com.
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example, the channel pinch-off gate voltage Vpo and subband

spacing �hx12). This confirms that these QPCs had saddle-

point potentials that were smooth enough for showing quan-

tized conductance, while it also shows that the many-body

effects are very sensitive to small static fluctuations on these

saddle-point potentials or to nanoscale device-to-device var-

iations in the dimensions of the potentials. This picture was

confirmed by shifting the channel position inside a particular

QPC2F device. This can be implemented by operating a

QPC2F with a difference DVg between the values of Vg on

the two gate fingers in Fig. 1(a). Such a channel shift did not

change the quantized conductance significantly but did cause

strong variation in the signatures of many-body physics.

Earlier work had established that such device-to-device fluc-

tuations can be due to remote defects or impurities, a slight

variation in electron density or due to the nanoscale variation

in devices that is inherent to the nanofabrication process.6–8

Consequently, studying how the many-body effects depend

on the length of the QPC channel requires QPCs for which

the channel length can be tuned continuously in situ, and

where this can be operated without a transverse displacement

of the QPC channel in the semiconductor material. The work

that we report here aimed at realizing such devices.

This article is organized as follows: Section II starts

with a short overview of the options and the choices we

made for realizing the QPC6F devices. Next, in Sec. III, we

present the results of electrostatic simulations. In Sec. IV,

we describe the sample fabrication and measurement techni-

ques. This is followed by comparing results from simulations

and experiments for QPC6F devices in Sec. V, and Sec. VI

summarizes our conclusions.

II. DESIGN CONSIDERATIONS

We designed our QPC6F devices with 6 rectangular gate

fingers, in a symmetric layout with two sets of 3 parallel

gate fingers (Figs. 1(b) and 2(a)). SEM inspection of fabri-

cated devices yields that the central gate finger is 200 nm

wide (as measured along the direction of channel length

Leff). The outer gate fingers are 160 nm wide, and the narrow

gaps between gate fingers are 44 nm wide. This yields

ð200þ 2 � 160þ 2 � 44Þ nm ¼ 608 nm for the total distance

between the outer sides of the 3 parallel gate fingers. The

lithographic width of the QPC channel (distance between

the two sets of 3 gate fingers) is 350 nm.

An example of alternative designs for the gate geome-

tries that we considered is in Fig. 2(b). This design has a two-

sided funnel shape for the channel and this could result in

length-tunable QPC operation that better maintains a regular

shape for the saddle-point potential. However, the electro-

static simulations in Sec. III show that the rectangular gate

fingers as in Fig. 2(a) also give a length-tunable saddle-point

potential that maintains a regular shape while tuning the

length. This observation holds for a range of device dimen-

sions similar to our design. For our particular design, the lith-

ographic length and width (350 nm) of the channel are

comparable, and the 2DEG is as far as 110 nm distance below

the surface (and the part in the center of the channel that

actually contains electrons is very narrow, about 20 nm). In

this regime, the saddle-point potential is strongly rounded

with respect to the lithographic shapes of the gates (see for

example Figs. 3(c) and 3(d)). An important advantage of the

rectangular design is that it provides two clear points for cali-

brating the effective channel length Leff: Operating at

Vg2=Vg1 ¼ 0 gives Lef f ¼ Llitho for the central gate finger

alone (200 nm, see Fig. 1(b)), while operating at Vg2=Vg1 ¼ 1

gives Leff equal to the lithographic distance between the outer

sides of the 3 parallel gate fingers (608 nm).

A point of concern for this design that deserves attention

is whether the narrow gaps between the 3 parallel gate fin-

gers induce significant structure on the saddle-point poten-

tial. The electrostatic simulations show that this is not the

case (see again the examples in Figs. 3(c) and 3(d)). The part

of the channel that contains electrons is relatively far away

from the gate electrodes, and the potential U at this location

is strongly rounded. Notably, the full height of the potentials

in Fig. 3 is about 1 eV, while the occupied subbands are at a

height of only about 10meV above the stationary point of

the saddle-point potential (in the center of the channel). Such

gaps between parallel gate electrodes can be much narrower

when depositing a wider gate on top of the central gate, with

an insulating layer between them. We chose against applying

this idea since we also aimed to have devices with a very

low level of noise and instabilities from charge fluctuations

FIG. 2. (a) Design of the geometry of the 6 gate fingers for a QPC6F device

with 6 rectangular gate fingers. (b) Design of a QPC6F device with the 4

outer gates in a shape that explicitly induces a funnel shape for the entry and

exit of the QPC transport channel.

FIG. 1. (a) SEM image of a conventional split-gate quantum point contact

(QPC). It has two gate fingers (QPC2F device). The length of the QPC chan-

nel is fixed and can be parameterized by the lithographic length Llitho of the

gate structure. The diagram also illustrates the measurement scheme. (b)

SEM image of a length tunable QPC with 6 gate fingers (QPC6F device).

Here, the effective length Leff of the QPC can be tuned by changing the ratio

of the gate voltages on the central gates (Vg1) and side gates (Vg2).
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at defect and impurity sites in the device materials. In this

respect, we expect better behavior when all gate fingers are

deposited in a single fabrication cycle, and when deposition

of an insulating oxide or polymer layer can be omitted.

III. ELECTROSTATIC SIMULATIONS

This section presents results of electrostatic simulations

of the saddle-point potentials that define the QPC channel.

The focus is on the design with 6 rectangular gate fingers

(Fig. 2(a)), with gate dimensions as mentioned in the begin-

ning of Sec. II. The simulations are based on the modeling

approach that was introduced by Davies et al.9

A. Davies’ method for simulating 2DEG electrostatics

Davies et al.9 introduced a method for modeling the

electrostatics of gated 2DEG. It calculates the electrostatic

potential U for electrons in the 2DEG regions around the

gates (the approach only applies to the situation where the

2DEG underneath the gates is depleted due to a negative

voltage on gate electrodes). There are other models and

approaches8,10–13 for calculating such potential landscapes,

but these are all more complicated and computationally

more demanding. The approach by Davies et al. is relatively

simple. It does not account for electrostatic screening effects,

and, notably, it does not account for the electron many-body

interactions that were mentioned earlier. Still, it was shown

that it is well suited for calculating a valid picture of a QPC

saddle-point potential near the channel pinch-off situation.6

The negative voltage on a gate that is needed to exactly

deplete 2DEG underneath a large gate is called the threshold

voltage Vt, and it is to a good approximation given by

Vt ¼
ÿen2Dd

�r�0
: (1)

Here n2D is the electron density in the 2DEG (at zero gate

voltage), d is the depth of the 2DEG, �r is the relative dielec-
tric constant of the material below the gate, and �0 is the

dielectric constant of vacuum (for details see Refs. 6 and 9).

The value of Vt for a certain 2DEG material defines the value

U0 where the electrostatic potential U for electrons in the

2DEG becomes higher than the chemical potential of the

2DEG. In turn, this can be used to define in an arbitrary

potential landscape U (for arbitrary gates shapes and for arbi-

trary gate voltages) the positions where U ¼ U0. That is, one

can calculate the positions in a gated device structure where

there is a boundary between depleted and non-depleted

2DEG and also calculate the electrostatic potential U around

such points. When the center of the QPC has U ¼ U0, the

channel is at pinch-off and no electrons can pass through the

QPC. The gate voltage at which this happens is called

the pinch-off voltage Vpo. Notably, the calculated value of U

at a certain position is simply the superposition of all the

contributions to U from different gate electrodes, and it is

linear in the gate voltage on each of these electrodes.9

Figure 3 presents examples of saddle-point potentials U

that are calculated with Davies’ method, both for QPC2F and

QPC6F devices. The calculations are for material parameters

and geometries of measured devices (as described in detail

in Secs. IV and V). Figures 3(c) and 3(d) show that the

length of the transport channel depends on the applied ratio

Vg2=Vg1, and that the narrow gaps between 3 parallel electro-

des in QPC6F devices do not give significant structure on

the saddle-point potential in the operation regime that we

consider.

FIG. 3. (a) and (b) Saddle-point potentials that represent the electrostatic potential U felt by electrons in the 2DEG plane. The plots represent an area of

1000� 1000 nm2, centered at the middle of a QPC channel with a length Llitho of 200 nm (a) and 600 nm (b) of a QPC2F device with a lithographic channel

width of 350 nm. It is calculated for the material parameters that are valid for the measured devices. See Fig. 1(b) for relating the x- and y-direction to the gate

geometry. (c) and (d) Similar saddle-point potentials U calculated for QPC6F devices (with material parameters and geometry as the measured devices). The

effective channel length is shorter for the case that is calculated for Vg2=Vg1 ¼ 0:2 (c) than for the case Vg2=Vg1 ¼ 0:8 (d) (also note that QPC6F results for

Vg2=Vg1 ¼ 0 are the same as plot (a)). Panels (c) and (d) also show that the narrow gaps between 3 parallel gate fingers do not induce significant structure at

low energies in the saddle-point passage (it only induces a weak fingerprint off to the side in the channel, at energies that are much higher than the occupied

electron levels, see panel (d)).
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B. Definition and tuning of the effective length Leff

The focus of this work is on realizing QPC channels

with a tunable length. The channels are in fact saddle-point

potentials (see Fig. 3), and it is for such a smooth shape not

obvious on the value of the channel length. We therefore

characterize this channel length with the parameter Leff,

which corresponds to the value of the lithographic length

Llitho of a QPC2F type device (with rectangular gate electro-

des, see Fig. 1(a)) that gives effectively the same saddle-

point potential.

We implemented this as follows. We calculated the

saddle-point potential U(x, y) for the pinch-off situation (see

Figs. 1(b) and 3(a) for how the x- and y-directions are

defined). The transverse confinement in the middle of the

QPC (defined as x¼ 0, y¼ 0) is parabolic to a very good

approximation. When moving out of the channel along the

x-direction, the transverse confinement becomes weaker, but

remains at first parabolic. Notably, the energy eigenstates for

confinement in such a parabolic potential, described as

UðyÞ ¼
1

2
m�

x
2
0y

2 (2)

have a width that is (for all levels) proportional to x
ÿ1=2
0 . In

this expression, m� is the effective mass of the electron and

x0 is the angular frequency of natural oscillations in this

potential. The parameter x0 defines here the steepness of

U(y), and we obtain x0ðxÞ values from fitting Eq. (2) to

potentials U(x, y) obtained with Davies’s method. We use

this and investigate the width DyðxÞ in y-direction for the

lowest energy eigenstate, at all positions x along the channel

(see Fig. 4(a)). For parabolic confinement, this wavefunction

in y-direction has a Gaussian shape and has a width

DyðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h

4pm� x0ðxÞ

s

: (3)

With this approach, we analyzed that the distance from

x¼ 0 to the x-position xa where the value DyðxÞ increased by

a factor a � 1:1 defines a suitable point for defining the

value of Leff. That is, we define

La ¼ 2 xa (4)

and find xa by solving

Dyðx ¼ xaÞ ¼ a � Dyðx ¼ 0Þ (5)

for a certain a. Subsequently, Leff is defined by using the suit-

able a value,

Lef f ¼ La for a ¼ 1:1: (6)

FIG. 4. (a) Schematic representation of a QPC6F

device, illustrating length variables: DyðxÞ is the
width of the ground-state wavefunction at posi-

tion x in the channel and La is twice the distance

from the QPC center to the position x where

DyðxÞ is a factor a wider. (b) The calculated

length La for a range of values of the litho-

graphic length of QPC2F devices, for three val-

ues of a. (c) The calculated effective length La
for a ¼ 1:1 for a QPC6F device, as a function of

the ratio Vg2=Vg1.
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We came to this parameterization as follows. We used

this ansatz first in simulations of QPC2F devices. Here, we

explored for different values of a the relation between Llitho
and La. Results of this for a ¼ 1:05, 1.1, and 1.2 are pre-

sented in Fig. 4(b). For the range of Llitho values that is of in-

terest to our study (�100 nm to �500 nm), we find the most

reasonable overall agreement between the actual value for

Llitho (input to the simulation) and the value La (derived from

the simulation) for a ¼ 1:1. The agreement is not perfect,

but we analyzed that the deviation is within an uncertainty

that we need to assume because the exact shapes of saddle-

point potentials in different device geometries do show some

variation, and because of the limited validity of Davies’

method. Nevertheless, it provides a reasonable recipe for

assigning a value Leff to any saddle-point potential, with at

most 20% error.

Fig. 4(c) presents results of calculating La ¼ Lef f for

a ¼ 1:1 from simulations of a QPC6F device, operated at dif-

ferent values for Vg2=Vg1. The results show a clear mono-

tonic trend, with Lef f ¼ 210 nm for Vg2=Vg1 ¼ 0 to

Lef f ¼ 525 nm for Vg2=Vg1 ¼ 1. This is for a QPC6F device

for which we expect Lef f ¼ 200 nm for Vg2=Vg1 ¼ 0 and

Lef f ¼ 608 nm for Vg2=Vg1 ¼ 1 (see Sec. II). In Sec. V, we

discuss how this latter point is used for applying a small cor-

rection to the simulated values for Leff. These simulations

show that the QPC6F that we consider allows for tuning Leff
by about a factor 3.

It is worthwhile to note that our current design showed

optimal behavior in the sense that it can tune Leff from about

200 nm to 600 nm, while the dependence of Leff on Vg2=Vg1

is close to linear. We also simulated QPC6F devices with

wider gate electrodes for the outer gates and (as mentioned

in Sec. II) devices with gate geometries as in Fig. 2(b). These

devices showed a steeper slope for part of the relation

between Vg2=Vg1 and Leff, which is not desirable.

IV. SAMPLE FABRICATION AND MEASUREMENT
TECHNIQUES

We fabricated QPC devices with a GaAs/Al0:35Ga0:65As

MBE-grown heterostructure, which has a 2DEG at 110 nm

depth below its surface from modulation doping. The layer

sequence and thickness of the materials from top to bottom

(i.e., going into the material) starts with a 5 nm GaAs cap-

ping layer, then a 60 nm Al0:35Ga0:65As layer with Si doping

at about 1� 1018cmÿ3, which is followed by an undoped

spacer layer of 45 nm. The 2DEG is located in a heterojunc-

tion quantum well at the interface with the next layer, which

is a 650 nm undoped GaAs layer. This heterostructure was

grown on a commercial semi-insulating GaAs wafer,

after first growing a sequence of 10 GaAs/AlAs layers for

smoothing the surface and trapping impurities. The 2DEG

had an electron density n2D ¼ 1:6� 1015 mÿ2 and a mobility

l ¼ 118m2 Vÿ1 sÿ1. We fabricated both conventional

QPC2F devices and QPC6F devices by standard electron-

beam lithography and clean-room techniques. The gate fin-

gers were deposited using 15 nm Au on top of a 5 nm Ti

sticking layer. For measuring transport through the QPCs,

we realized ohmic contacts to the 2DEG reservoirs by

annealing of a AuGe/Ni/Au stack that was deposited on the

wafer surface.14 The geometries of the fabricated devices

were already described in the beginning of Sec. II.

The measurements were performed in a He-bath cryostat

and in a dilution refrigerator, thus getting access to effective

electron temperatures from 80 mK to 4.2K. We used

standard lock-in techniques with an a.c. excitation voltage

Vbias ¼ 10 lV RMS at 387Hz. Fig. 1(a) shows the 4-probe

voltage-biased measurement scheme, where both the current

and the actual voltage drop Vsd across the QPC channel are

measured such that any influence of series resistances could

be removed unambiguously. The gate voltages are applied

with respect to a single grounded point in the loop that car-

ries the QPC current.

V. EXPERIMENTAL REALIZATION OF
LENGTH-TUNABLE QPCS

This section presents an experimental characterization of

the QPC6F devices that we designed (Fig. 1(b)) and we com-

pare the results to our simulations. Figure 5 presents measure-

ments of the conductance G as a function of Vg1 and Vg2.

Several labels in the plot illustrate relevant concepts, which

were partly discussed before. For the area in this plot with

Vg2 more negative than Vg1, we expect some quantum-dot

like localization in the middle of the channel and this regime

should therefore be avoided in studies of QPC behavior. Fur-

ther, the plot illustrates that operation for a particular value of

Leff requires co-sweeping of Vg1 and Vg2 from a particular

point below pinch-off in a straight line to the pivot point.

This corresponds to opening the QPC at a fixed ratio for

Vg2=Vg1. The pivot point is the point where the gate voltages

do not alter the original electron density of the 2DEG. For

this measurement, the gate voltage is Vg1 ¼ Vg2 ¼ 0V, but

this is different for the case of biased cool downs. We carried

out biased cool downs for suppressing noise from charge

instabilities in the donor layer.15,16 For such experiments, the

QPCs were cooled down with a positive voltage on the gates.

FIG. 5. QPC linear conductance as a function of Vg1 and Vg2 for a QPC6F

device, presented in the form of iso-conductance lines at integer G0 levels.

The conductance was measured at 4.2K where the quantized conductance is

nearly fully washed out by temperature. The two operational regimes above

and below the line Vg1 ¼ Vg2 yield QPC and quantum dot behavior,

respectively.
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We typically used þ0.3V and observed indeed better stabil-

ity with respect to charge noise. The effect of such a cool

down can be described as a contribution to the gate voltage of

ÿ0.3V that is frozen into the material.15,16 Consequently, co-

sweeping of Vg1 and Vg2 for maintaining a fixed channel

length must now be carried out with respect to the pivot point

Vg1 ¼ Vg2 ¼ þ0:3V instead of Vg1 ¼ Vg2 ¼ 0V.

The theory behind the Davies method illustrates why

operation at fixed effective length requires a fixed ratio

Vg2=Vg1. All points in the potentials landscapes U for QPC2F

devices as in Figs. 3(a) and 3(b) have a height that scales lin-

ear with the gate voltage Vg. Thus, when opening the QPC,

the full saddle-point potential changes height at a fixed

shape. Mimicking this situation with QPC6F devices requires

a fixed ratio Vg2=Vg1, again because Vg1 and Vg2 influence U

in a linear manner. The plot also illustrates the two special

operation lines where the effective length of the channel is

unambiguous, and we used these points to better calibrate

the relation between Vg2=Vg1 and Leff. The first case is the

line at Vg2 ¼ 0, which yields Lef f ¼ 200 nm, as defined by

the central gates alone. The second case is the line

Vg1 ¼ Vg2. Here, Leff is 608 nm, as defined by the full litho-

graphic length of the 3 gate fingers.

We improved and further checked our calibration of the

relation between Vg2=Vg1 and Leff as follows. We used the

trend that came out of the simulations (Fig. 4(c)) but pinned

the curve at 200 nm for Vg2=Vg1 ¼ 0 and at 608 nm for

Vg2=Vg1 ¼ 1 (black line in Fig. 6(b)). This trace shows good

agreement with results from an independent check (dashed

line) that used the pinch-off gate voltage Vpo as an identifier

for the effective length. This independent check used data

from a set of QPC2F devices for calibrating the relation

between Llitho and Vpo (Fig. 6(a)). This shows the trend that

shorter QPC2F devices require a more negative gate voltage

to reach pinch-off.17 We related this to the pinch-off values

in QPC6F devices. In particular, we analyzed the pinch-off

points on the Vg1 axis, and its dependence on Vg2=Vg1 (see

also Fig. 7). The results of using this for assigning a certain

Leff to each Vg2=Vg1 is the dashed line in Fig. 6(b) and shows

good agreement with the values that were obtained from

simulations. We can thus assign a value to Leff for each

Vg2=Vg1 with an absolute error that is at most 50 nm. Nota-

bly, the relative error when describing the increase in Leff
upon increasing Vg2=Vg1 is much smaller.

The results in Fig. 7 provide an example of linear con-

ductance measurements on a QPC6F device at 80 mK. The

traces show clear quantized conductance plateaus for all set-

tings of Leff (Fig. 7(b)). Several of these linear conductance

traces also show the 0.7 anomaly (see also Fig. 7(a)), and the

strength of its expression shows a modulation as a function

of Leff over about 3 periods. This example of control over the

0.7 anomaly illustrates the validity and importance of our

type of QPCs in studies of length-dependent transport prop-

erties and many-body effects in QPCs. However, a detailed

analysis of the observed length dependence goes beyond the

scope of the present manuscript. A first detailed study in this

direction will be published as Ref. 18.

FIG. 6. (a) Experimentally determined relation between the pinch-off gate voltage Vpo and the lithographic length of QPC2F devices. Points are experimental

results. The solid line is a phenomenological expression that was used for parameterizing the relation between Vpo and the lithographic length. (b) Comparison

between measured and simulated values of the effective channel length for a QPC6F device.

FIG. 7. (a) Linear conductance G as a function of Vg1 for a QPC6F device

with fixed ratio Vg2=Vg1 ¼ 0:29, measured at 80 mK. The black arrow points

to the 0.7 anomaly in the trace. (b) Linear conductance G measured with the

same device and conditions as (a), but now with traces for fixed ratios

Vg2=Vg1 ¼ ÿ0:05 to Vg2=Vg1 ¼ 1 (left to right, traces not offset). This corre-

sponds to increasing the effective channel length Leff from 186 nm to 608 nm.

The gray arrow points to the position of the trace that is shown in (a).
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VI. CONCLUSIONS

We have developed and characterized length-tunable

QPCs that are based on a symmetric split-gate geometry

with 6 gate fingers. Gate structures with different shapes and

dimensions can be designed depending upon the required

range for length tuning and for optimizing the tuning curve.

For our purpose (QPCs with an effective channel length

between about 200 nm and 600 nm, and 350 nm channel

width), we found that simple rectangular gate fingers are an

attractive choice. Our simulations and experimental results

are in close agreement. We were able to tune the effective

length by about a factor 3, from 200 nm to 608 nm. QPCs are

the simplest devices that show clear signatures of many-

body physics, as, for example, the 0.7 anomaly and the zero-

bias anomaly (ZBA).19 Our length-tunable QPCs provide an

interesting platform for systematically investigating these

many-body effects. In particular, these QPCs provide a

method for studying the influence of the QPC geometry

without suffering from device-to-device fluctuations that

hamper such studies in conventional QPCs with 2 gate

fingers. Studies in this direction are presented in Ref. 18.
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