25,781 research outputs found
Microscopic theory of Cooper pair beam splitters based on carbon nanotubes
We analyze microscopically a Cooper pair splitting device in which a central
superconducting lead is connected to two weakly coupled normal leads through a
carbon nanotube. We determine the splitting efficiency at resonance in terms of
geometrical and material parameters, including the effect of spin-orbit
scattering. While the efficiency in the linear regime is limited to 50% and
decay exponentially as a function of the width of the superconducting region we
show that it can rise up to in the non-linear regime for certain
regions of the stability diagram.Comment: 5 pages, 5 figure
Charging Interacting Rotating Black Holes in Heterotic String Theory
We present a formulation of the stationary bosonic string sector of the whole
toroidally compactified effective field theory of the heterotic string as a
double Ernst system which, in the framework of General Relativity describes, in
particular, a pair of interacting spinning black holes; however, in the
framework of low--energy string theory the double Ernst system can be
particularly interpreted as the rotating field configuration of two interacting
sources of black hole type coupled to dilaton and Kalb--Ramond fields. We
clarify the rotating character of the --component of the
antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion
nature. We also recall the fact that the double Ernst system possesses a
discrete symmetry which is used to relate physically different string vacua.
Therefore we apply the normalized Harrison transformation (a charging symmetry
which acts on the target space of the low--energy heterotic string theory
preserving the asymptotics of the transformed fields and endowing them with
multiple electromagnetic charges) on a generic solution of the double Ernst
system and compute the generated field configurations for the 4D effective
field theory of the heterotic string. This transformation generates the
vector field content of the whole low--energy heterotic string
spectrum and gives rise to a pair of interacting rotating black holes endowed
with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge
vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio
Why does gravitational radiation produce vorticity?
We calculate the vorticity of world--lines of observers at rest in a
Bondi--Sachs frame, produced by gravitational radiation, in a general Sachs
metric. We claim that such an effect is related to the super--Poynting vector,
in a similar way as the existence of the electromagnetic Poynting vector is
related to the vorticity in stationary electrovacum spacetimes.Comment: 9 pages; to appear in Classical and Quantum Gravit
Expansionfree Fluid Evolution and Skripkin Model in f(R) Theory
We consider the modified theory of gravity whose higher order
curvature terms are interpreted as a gravitational fluid or dark source. The
gravitational collapse of a spherically symmetric star, made up of locally
anisotropic viscous fluid, is studied under the general influence of the
curvature fluid. Dynamical equations and junction conditions are modified in
the context of f(R) dark energy and by taking into account the expansionfree
evolution of the self-gravitating fluid. As a particular example, the Skripkin
model is investigated which corresponds to isotropic pressure with constant
energy density. The results are compared with corresponding results in General
Relativity.Comment: 18 pages, accepted for publication Int. J. Mod. Phys.
Dissipative fluids out of hydrostatic equilibrium
In the context of the M\"{u}ller-Israel-Stewart second order phenomenological
theory for dissipative fluids, we analyze the effects of thermal conduction and
viscosity in a relativistic fluid, just after its departure from hydrostatic
equilibrium, on a time scale of the order of relaxation times. Stability and
causality conditions are contrasted with conditions for which the ''effective
inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required)
Submitted to Classical and Quantum Gravit
Collective Effects in Linear Spectroscopy of Dipole-Coupled Molecular Arrays
We present a consistent analysis of linear spectroscopy for arrays of nearest
neighbor dipole-coupled two-level molecules that reveals distinct signatures of
weak and strong coupling regimes separated for infinite size arrays by a
quantum critical point. In the weak coupling regime, the ground state of the
molecular array is disordered, but in the strong coupling regime it has
(anti)ferroelectric ordering. We show that multiple molecular excitations
(odd/even in weak/strong coupling regime) can be accessed directly from the
ground state. We analyze the scaling of absorption and emission with system
size and find that the oscillator strengths show enhanced superradiant behavior
in both ordered and disordered phases. As the coupling increases, the single
excitation oscillator strength rapidly exceeds the well known Heitler-London
value. In the strong coupling regime we show the existence of a unique spectral
transition with excitation energy that can be tuned by varying the system size
and that asymptotically approaches zero for large systems. The oscillator
strength for this transition scales quadratically with system size, showing an
anomalous one-photon superradiance. For systems of infinite size, we find a
novel, singular spectroscopic signature of the quantum phase transition between
disordered and ordered ground states. We outline how arrays of ultra cold
dipolar molecules trapped in an optical lattice can be used to access the
strong coupling regime and observe the anomalous superradiant effects
associated with this regime.Comment: 12 pages, 7 figures main tex
Are the hosts of VLBI selected radio-AGN different to those of radio-loud AGN?
Recent studies have found that radio-AGN selected by radio-loudness show
little difference in terms of their host galaxy properties when compared to
non-AGN galaxies of similar stellar mass and redshift. Using new 1.4~GHz VLBI
observations of the COSMOS field we find that approximately 49\% of
high-mass (M 10 M), high luminosity (L
10 W~Hz) radio-AGN possess a VLBI detected counterpart. These
objects show no discernible bias towards specific stellar masses, redshifts or
host properties other than what is shown by the radio-AGN population in
general. Radio-AGN that are detected in VLBI observations are not special, but
form a representative sample of the radio-loud AGN population.Comment: 6 pages, 4 figures, lette
- …