24,983 research outputs found

    Cyclotomic polynomials at roots of unity

    Get PDF

    Microscopic theory of Cooper pair beam splitters based on carbon nanotubes

    Full text link
    We analyze microscopically a Cooper pair splitting device in which a central superconducting lead is connected to two weakly coupled normal leads through a carbon nanotube. We determine the splitting efficiency at resonance in terms of geometrical and material parameters, including the effect of spin-orbit scattering. While the efficiency in the linear regime is limited to 50% and decay exponentially as a function of the width of the superconducting region we show that it can rise up to ∼100\sim 100% in the non-linear regime for certain regions of the stability diagram.Comment: 5 pages, 5 figure

    Charging Interacting Rotating Black Holes in Heterotic String Theory

    Full text link
    We present a formulation of the stationary bosonic string sector of the whole toroidally compactified effective field theory of the heterotic string as a double Ernst system which, in the framework of General Relativity describes, in particular, a pair of interacting spinning black holes; however, in the framework of low--energy string theory the double Ernst system can be particularly interpreted as the rotating field configuration of two interacting sources of black hole type coupled to dilaton and Kalb--Ramond fields. We clarify the rotating character of the BtϕB_{t\phi}--component of the antisymmetric tensor field of Kalb--Ramond and discuss on its possible torsion nature. We also recall the fact that the double Ernst system possesses a discrete symmetry which is used to relate physically different string vacua. Therefore we apply the normalized Harrison transformation (a charging symmetry which acts on the target space of the low--energy heterotic string theory preserving the asymptotics of the transformed fields and endowing them with multiple electromagnetic charges) on a generic solution of the double Ernst system and compute the generated field configurations for the 4D effective field theory of the heterotic string. This transformation generates the U(1)nU(1)^n vector field content of the whole low--energy heterotic string spectrum and gives rise to a pair of interacting rotating black holes endowed with dilaton, Kalb--Ramond and multiple electromagnetic fields where the charge vectors are orthogonal to each other.Comment: 15 pages in latex, revised versio

    Why does gravitational radiation produce vorticity?

    Get PDF
    We calculate the vorticity of world--lines of observers at rest in a Bondi--Sachs frame, produced by gravitational radiation, in a general Sachs metric. We claim that such an effect is related to the super--Poynting vector, in a similar way as the existence of the electromagnetic Poynting vector is related to the vorticity in stationary electrovacum spacetimes.Comment: 9 pages; to appear in Classical and Quantum Gravit

    Expansionfree Fluid Evolution and Skripkin Model in f(R) Theory

    Full text link
    We consider the modified f(R)f(R) theory of gravity whose higher order curvature terms are interpreted as a gravitational fluid or dark source. The gravitational collapse of a spherically symmetric star, made up of locally anisotropic viscous fluid, is studied under the general influence of the curvature fluid. Dynamical equations and junction conditions are modified in the context of f(R) dark energy and by taking into account the expansionfree evolution of the self-gravitating fluid. As a particular example, the Skripkin model is investigated which corresponds to isotropic pressure with constant energy density. The results are compared with corresponding results in General Relativity.Comment: 18 pages, accepted for publication Int. J. Mod. Phys.

    Dissipative fluids out of hydrostatic equilibrium

    Get PDF
    In the context of the M\"{u}ller-Israel-Stewart second order phenomenological theory for dissipative fluids, we analyze the effects of thermal conduction and viscosity in a relativistic fluid, just after its departure from hydrostatic equilibrium, on a time scale of the order of relaxation times. Stability and causality conditions are contrasted with conditions for which the ''effective inertial mass'' vanishes.Comment: 21 pages, 1 postscript figure (LaTex 2.09 and epsfig.sty required) Submitted to Classical and Quantum Gravit

    Collective Effects in Linear Spectroscopy of Dipole-Coupled Molecular Arrays

    Get PDF
    We present a consistent analysis of linear spectroscopy for arrays of nearest neighbor dipole-coupled two-level molecules that reveals distinct signatures of weak and strong coupling regimes separated for infinite size arrays by a quantum critical point. In the weak coupling regime, the ground state of the molecular array is disordered, but in the strong coupling regime it has (anti)ferroelectric ordering. We show that multiple molecular excitations (odd/even in weak/strong coupling regime) can be accessed directly from the ground state. We analyze the scaling of absorption and emission with system size and find that the oscillator strengths show enhanced superradiant behavior in both ordered and disordered phases. As the coupling increases, the single excitation oscillator strength rapidly exceeds the well known Heitler-London value. In the strong coupling regime we show the existence of a unique spectral transition with excitation energy that can be tuned by varying the system size and that asymptotically approaches zero for large systems. The oscillator strength for this transition scales quadratically with system size, showing an anomalous one-photon superradiance. For systems of infinite size, we find a novel, singular spectroscopic signature of the quantum phase transition between disordered and ordered ground states. We outline how arrays of ultra cold dipolar molecules trapped in an optical lattice can be used to access the strong coupling regime and observe the anomalous superradiant effects associated with this regime.Comment: 12 pages, 7 figures main tex

    Are the hosts of VLBI selected radio-AGN different to those of radio-loud AGN?

    Full text link
    Recent studies have found that radio-AGN selected by radio-loudness show little difference in terms of their host galaxy properties when compared to non-AGN galaxies of similar stellar mass and redshift. Using new 1.4~GHz VLBI observations of the COSMOS field we find that approximately 49±8\pm8\% of high-mass (M >> 1010.5^{10.5} M⊙_{\odot}), high luminosity (L1.4_{1.4} >> 1024^{24} W~Hz−1^{-1}) radio-AGN possess a VLBI detected counterpart. These objects show no discernible bias towards specific stellar masses, redshifts or host properties other than what is shown by the radio-AGN population in general. Radio-AGN that are detected in VLBI observations are not special, but form a representative sample of the radio-loud AGN population.Comment: 6 pages, 4 figures, lette
    • …
    corecore