1,020 research outputs found

    Complex WKB Analysis of a PT Symmetric Eigenvalue Problem

    Full text link
    The spectra of a particular class of PT symmetric eigenvalue problems has previously been studied, and found to have an extremely rich structure. In this paper we present an explanation for these spectral properties in terms of quantisation conditions obtained from the complex WKB method. In particular, we consider the relation of the quantisation conditions to the reality and positivity properties of the eigenvalues. The methods are also used to examine further the pattern of eigenvalue degeneracies observed by Dorey et al. in [1,2].Comment: 22 pages, 13 figures. Added references, minor revision

    Excited state g-functions from the Truncated Conformal Space

    Get PDF
    In this paper we consider excited state g-functions, that is, overlaps between boundary states and excited states in boundary conformal field theory. We find a new method to calculate these overlaps numerically using a variation of the truncated conformal space approach. We apply this method to the Lee-Yang model for which the unique boundary perturbation is integrable and for which the TBA system describing the boundary overlaps is known. Using the truncated conformal space approach we obtain numerical results for the ground state and the first three excited states which are in excellent agreement with the TBA results. As a special case we can calculate the standard g-function which is the overlap with the ground state and find that our new method is considerably more accurate than the original method employed by Dorey et al.Comment: 21 pages, 6 figure

    All Hermitian Hamiltonians Have Parity

    Get PDF
    It is shown that if a Hamiltonian HH is Hermitian, then there always exists an operator P having the following properties: (i) P is linear and Hermitian; (ii) P commutes with H; (iii) P^2=1; (iv) the nth eigenstate of H is also an eigenstate of P with eigenvalue (-1)^n. Given these properties, it is appropriate to refer to P as the parity operator and to say that H has parity symmetry, even though P may not refer to spatial reflection. Thus, if the Hamiltonian has the form H=p^2+V(x), where V(x) is real (so that H possesses time-reversal symmetry), then it immediately follows that H has PT symmetry. This shows that PT symmetry is a generalization of Hermiticity: All Hermitian Hamiltonians of the form H=p^2+V(x) have PT symmetry, but not all PT-symmetric Hamiltonians of this form are Hermitian

    On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts

    Full text link
    In the context of two particularly interesting non-Hermitian models in quantum mechanics we explore the relationship between the original Hamiltonian H and its Hermitian counterpart h, obtained from H by a similarity transformation, as pointed out by Mostafazadeh. In the first model, due to Swanson, h turns out to be just a scaled harmonic oscillator, which explains the form of its spectrum. However, the transformation is not unique, which also means that the observables of the original theory are not uniquely determined by H alone. The second model we consider is the original PT-invariant Hamiltonian, with potential V=igx^3. In this case the corresponding h, which we are only able to construct in perturbation theory, corresponds to a complicated velocity-dependent potential. We again explore the relationship between the canonical variables x and p and the observables X and P.Comment: 9 pages, no figure

    PT-Symmetric Versus Hermitian Formulations of Quantum Mechanics

    Full text link
    A non-Hermitian Hamiltonian that has an unbroken PT symmetry can be converted by means of a similarity transformation to a physically equivalent Hermitian Hamiltonian. This raises the following question: In which form of the quantum theory, the non-Hermitian or the Hermitian one, is it easier to perform calculations? This paper compares both forms of a non-Hermitian ix3ix^3 quantum-mechanical Hamiltonian and demonstrates that it is much harder to perform calculations in the Hermitian theory because the perturbation series for the Hermitian Hamiltonian is constructed from divergent Feynman graphs. For the Hermitian version of the theory, dimensional continuation is used to regulate the divergent graphs that contribute to the ground-state energy and the one-point Green's function. The results that are obtained are identical to those found much more simply and without divergences in the non-Hermitian PT-symmetric Hamiltonian. The O(g4)\mathcal{O}(g^4) contribution to the ground-state energy of the Hermitian version of the theory involves graphs with overlapping divergences, and these graphs are extremely difficult to regulate. In contrast, the graphs for the non-Hermitian version of the theory are finite to all orders and they are very easy to evaluate.Comment: 13 pages, REVTeX, 10 eps figure

    Classical Trajectories for Complex Hamiltonians

    Full text link
    It has been found that complex non-Hermitian quantum-mechanical Hamiltonians may have entirely real spectra and generate unitary time evolution if they possess an unbroken \cP\cT symmetry. A well-studied class of such Hamiltonians is H=p2+x2(ix)ϵH= p^2+x^2(ix)^\epsilon (ϵ≥0\epsilon\geq0). This paper examines the underlying classical theory. Specifically, it explores the possible trajectories of a classical particle that is governed by this class of Hamiltonians. These trajectories exhibit an extraordinarily rich and elaborate structure that depends sensitively on the value of the parameter ϵ\epsilon and on the initial conditions. A system for classifying complex orbits is presented.Comment: 24 pages, 34 figure

    Calculation of the Hidden Symmetry Operator for a \cP\cT-Symmetric Square Well

    Full text link
    It has been shown that a Hamiltonian with an unbroken \cP\cT symmetry also possesses a hidden symmetry that is represented by the linear operator \cC. This symmetry operator \cC guarantees that the Hamiltonian acts on a Hilbert space with an inner product that is both positive definite and conserved in time, thereby ensuring that the Hamiltonian can be used to define a unitary theory of quantum mechanics. In this paper it is shown how to construct the operator \cC for the \cP\cT-symmetric square well using perturbative techniques.Comment: 10 pages, 2 figure

    On O(1) contributions to the free energy in Bethe Ansatz systems: the exact g-function

    Get PDF
    We investigate the sub-leading contributions to the free energy of Bethe Ansatz solvable (continuum) models with different boundary conditions. We show that the Thermodynamic Bethe Ansatz approach is capable of providing the O(1) pieces if both the density of states in rapidity space and the quadratic fluctuations around the saddle point solution to the TBA are properly taken into account. In relativistic boundary QFT the O(1) contributions are directly related to the exact g-function. In this paper we provide an all-orders proof of the previous results of P. Dorey et al. on the g-function in both massive and massless models. In addition, we derive a new result for the g-function which applies to massless theories with arbitrary diagonal scattering in the bulk.Comment: 28 pages, 2 figures, v2: minor corrections, v3: minor corrections and references adde

    Design-for-test structure to facilitate test vector application with low performance loss in non-test mode.

    Get PDF
    A switching based circuit is described which allows application of voltage test vectors to internal nodes of a chip without the problem of backdriving. The new circuit has low impact on the performance of an analogue circuit in terms of loss of bandwidth and allows simple application of analogue test voltages into internal nodes. The circuit described facilitates implementation of the forthcoming IEEE 1149.4 DfT philosophy [1]

    Tridiagonal PT-symmetric N by N Hamiltonians and a fine-tuning of their observability domains in the strongly non-Hermitian regime

    Full text link
    A generic PT-symmetric Hamiltonian is assumed tridiagonalized and truncated to N dimensions, and its up-down symmetrized special cases with J=[N/2] real couplings are considered. In the strongly non-Hermitian regime the secular equation gets partially factorized at all N. This enables us to reveal a fine-tuned alignment of the dominant couplings implying an asymptotically sharply spiked shape of the boundary of the J-dimensional quasi-Hermiticity domain in which all the spectrum of energies remains real and observable.Comment: 28 pp., 4 tables, 1 figur
    • …
    corecore