It is shown that if a Hamiltonian H is Hermitian, then there always exists
an operator P having the following properties: (i) P is linear and Hermitian;
(ii) P commutes with H; (iii) P^2=1; (iv) the nth eigenstate of H is also an
eigenstate of P with eigenvalue (-1)^n. Given these properties, it is
appropriate to refer to P as the parity operator and to say that H has parity
symmetry, even though P may not refer to spatial reflection. Thus, if the
Hamiltonian has the form H=p^2+V(x), where V(x) is real (so that H possesses
time-reversal symmetry), then it immediately follows that H has PT symmetry.
This shows that PT symmetry is a generalization of Hermiticity: All Hermitian
Hamiltonians of the form H=p^2+V(x) have PT symmetry, but not all PT-symmetric
Hamiltonians of this form are Hermitian