463 research outputs found

    PERFORMANCE OF TIMBER BOARD MODELS FOR PREDICTION OF LOCAL BENDING STIFFNESS AND STRENGTH – WITH APPLICATION ON DOUGLAS FIR SAWN TIMBER

    Get PDF
    Efficient utilization of structural timber requires accurate methods for machine strength grading. One of the most accurate methods presented this far is based on data of local fiber orientation on board surfaces, obtained from laser scanning. In this paper, two potential improvements of this method are examined. The first one consists of replacing a model based on simple integration over cross sections of boards for calculation of local bending stiffness by a 3D solid finite element (FE) model from which local bending stiffness is derived. The second improvement concerns replacement of a simple model for the fiber orientation in the interior of board by a more advanced one taking location of pith and growth direction of knots into account. Application of the alternative models on a sample of more than 200 Douglas fir boards, size 40 mm X 100 mm X 3000 mm, cut from large logs, show that each of the evaluated model improvements contributes to improved grading accuracy. When local bending stiffness is calculated utilizing the herein suggested FE model in combination with the improved model of fiber orientation in the interior of boards, a coefficient of determination to bending strength as high as 0.76 is obtained. For comparison, a coefficient of determination of 0.71 is obtain using the simpler original models

    Biomarkers of neuronal damage in saturation diving-a controlled observational study

    Get PDF
    PURPOSE: A prospective and controlled observational study was performed to determine if the central nervous system injury markers glial fibrillary acidic protein (GFAp), neurofilament light (NfL) and tau concentrations changed in response to a saturation dive. METHODS: The intervention group consisted of 14 submariners compressed to 401 kPa in a dry hyperbaric chamber. They remained pressurized for 36 h and were then decompressed over 70 h. A control group of 12 individuals was used. Blood samples were obtained from both groups before, during and after hyperbaric exposure, and from the intervention group after a further 25-26 h. RESULTS: There were no statistically significant changes in the concentrations of GFAp, NfL and tau in the intervention group. During hyperbaric exposure, GFAp decreased in the control group (mean/median - 15.1/ - 8.9 pg·mL-1, p < 0.01) and there was a significant difference in absolute change of GFAp and NfL between the groups (17.7 pg·mL-1, p = 0.02 and 2.34 pg·mL-1, p = 0.02, respectively). Albumin decreased in the control group (mean/median - 2.74 g/L/ - 0.95 g/L, p = 0.02), but there was no statistically significant difference in albumin levels between the groups. In the intervention group, haematocrit and mean haemoglobin values were slightly increased after hyperbaric exposure (mean/median 2.3%/1.5%, p = 0.02 and 4.9 g/L, p = 0.06, respectively). CONCLUSION: Hyperbaric exposure to 401 kPa for 36 h was not associated with significant increases in GFAp, NfL or tau concentrations. Albumin levels, changes in hydration or diurnal variation were unlikely to have confounded the results. Saturation exposure to 401 kPa seems to be a procedure not harmful to the central nervous system. TRIAL REGISTRATION: ClinicalTrials.gov NCT03192930

    Imaging of Single Antigens, Antibodies, and Specific Immunocomplex Formation by Scanning Force Microscopy

    Get PDF
    The most sensitive analytical techniques available today for detecting immuno assay complexes are radio or enzyme immuno analytical techniques, by which quantities of 107-108 analyte molecules can be detected. With the introduction of scanning force microscopy, a new method for detecting biological processes became available. Here, we examine the feasibility of using scanning force microscopy as a biosensitive tool. We demonstrate that single or multiple rabbit anti-human serum albumin molecules form complexes with preadsorbed single human serum albumin molecules on mica. However, no interaction is observed between human immunoglobulin G molecules and preadsorbed single albumin molecules; only separate antigens and antibodies are observed at random positions on the mica. This shows the ability of scanning force microscopy to act as a biosensor for detection of immunocomplexes, and to act as a very powerful tool to study molecule-surface interactions in general

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA

    Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans

    Get PDF
    Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)

    Ins and Outs of Cerebellar Modules

    Get PDF
    The modular concept of cerebellar connections has been advocated in the lifetime work of Jan Voogd. In this concept, a cerebellar module is defined as the conglomerate of one or multiple and non-adjacent, parasagittally arranged zones of Purkinje cells, their specific projection to a well-defined region of the cerebellar nuclei, and the climbing fiber input to these zones by a well-defined region of the inferior olivary complex. The modular organization of these olivo-cortico-nuclear connections is further exemplified by matching reciprocal connections between inferior olive and cerebellar nuclei. Because the different regions of the cerebellar nuclei show highly specific output patterns, cerebellar modules have been suggested to constitute functional entities. This idea is strengthened by the observation that anatomically defined modules adhere to the distribution of chemical markers in the cerebellar cortex suggesting that modules not only differ in their input and output relations but also may differ in operational capabilities. Here, I will briefly review some recent data on the establishment of cerebellar modules in rats. Furthermore, some evidence will be shown suggesting that the other main afferent system (i.e., mossy fibers), at least to some extent, also adheres to the modular organization. Finally, using retrograde transneuronal tracing with rabies virus, some evidence will be provided that several cerebellar modules may be involved in the control of individual muscles

    Formation of Very Large Conductance Channels by Bacillus cereus Nhe in Vero and GH4 Cells Identifies NheA + B as the Inherent Pore-Forming Structure

    Get PDF
    The nonhemolytic enterotoxin (Nhe) produced by Bacillus cereus is a pore-forming toxin consisting of three components, NheA, -B and -C. We have studied effects of Nhe on primate epithelial cells (Vero) and rodent pituitary cells (GH4) by measuring release of lactate dehydrogenase (LDH), K+ efflux and the cytosolic Ca2+ concentration ([Ca2+]i). Plasma membrane channel events were monitored by patch-clamp recordings. Using strains of B. cereus lacking either NheA or -C, we examined the functional role of the various components. In both cell types, NheA + B + C induced release of LDH and K+ as well as Ca2+ influx. A specific monoclonal antibody against NheB abolished LDH release and elevation of [Ca2+]i. Exposure to NheA + B caused a similar K+ efflux and elevation of [Ca2+]i as NheA + B + C in GH4 cells, whereas in Vero cells the rate of K+ efflux was reduced by 50% and [Ca2+]i was unaffected. NheB + C had no effect on either cell type. Exposure to NheA + B + C induced large-conductance steps in both cell types, and similar channel insertions were observed in GH4 cells exposed to NheA + B. In Vero cells, NheA + B induced channels of much smaller conductance. NheB + C failed to insert membrane channels. The conductance of the large channels in GH4 cells was about 10 nS. This is the largest channel conductance reported in cell membranes under quasi-physiological conditions. In conclusion, NheA and NheB are necessary and sufficient for formation of large-conductance channels in GH4 cells, whereas in Vero cells such large-conductance channels are in addition dependent on NheC
    corecore