43 research outputs found

    Difficulties with Recovering The Masses of Supermassive Black Holes from Stellar Kinematical Data

    Get PDF
    We investigate the ability of three-integral, axisymmetric, orbit-based modeling algorithms to recover the parameters defining the gravitational potential (M/L ratio and black hole mass Mh) in spheroidal stellar systems using stellar kinematical data. We show that the potential estimation problem is generically under-determined when applied to long-slit kinematical data of the kind used in most black hole mass determinations to date. A range of parameters (M/L, Mh) can provide equally good fits to the data, making it impossible to assign best-fit values. We illustrate the indeterminacy using a variety of data sets derived from realistic models as well as published observations of the galaxy M32. In the case of M32, our reanalysis demonstrates that data published prior to 2000 are equally consistent with Mh in the range 1.5x10^6-5x10^6 solar masses, with no preferred value in that range. While the HST/STIS data for this galaxy may overcome the degeneracy in Mh, HST data for most galaxies do not resolve the black hole's sphere of influence and in these galaxies the degree of degeneracy allowed by the data may be substantial. We investigate the effect on the degeneracy of enforcing smoothness (regularization) constraints. However we find no indication that the true potential can be recovered simply by enforcing smoothness. For a given smoothing level, all solutions in the minimum-chisquare valley exhibit similar levels of noise. These experiments affirm that the indeterminacy is real and not an artifact associated with non-smooth solutions. (Abridged)Comment: Accepted for publication in The Astrophysical Journal. Changes include discussion of regularizatio

    ON the CONSERVATION of the VERTICAL ACTION in GALACTIC DISKS

    Get PDF
    We employ high-resolution N-body simulations of isolated spiral galaxy models, from low-amplitude, multi-armed galaxies to Milky Way-like disks, to estimate the vertical action of ensembles of stars in an axisymmetrical potential. In the multi-armed galaxy the low-amplitude arms represent tiny perturbations of the potential, hence the vertical action for a set of stars is conserved, although after several orbital periods of revolution the conservation degrades significantly. For a Milky Way-like galaxy with vigorous spiral activity and the formation of a bar, our results show that the potential is far from steady, implying that the action is not a constant of motion. Furthermore, because of the presence of high-amplitude arms and the bar, considerable in-plane and vertical heating occurs that forces stars to deviate from near-circular orbits, reducing the degree at which the actions are conserved for individual stars, in agreement with previous results, but also for ensembles of stars. If confirmed, this result has several implications, including the assertion that the thick disk of our Galaxy forms by radial migration of stars, under the assumption of the conservation of the action describing the vertical motion of stars. © 2016. The American Astronomical Society. All rights reserved

    Relativistic and Newtonian core-shell models: analytical and numerical results

    Get PDF
    We make a detailed analysis of Newtonian as well as relativistic core-shell models recently proposed to describe a black hole or neutron star surrounded by shells of matter, and in a seminal sense also galaxies, supernovae and star remnants since there are massive shell-like structures surrounding many of them and also evidences for many galactic nuclei hiding black holes. We discuss the unicity of the models in relation to their analyticity at the black hole horizon and also to the full elimination of conical singularities. Secondly, we study the role played by the presence/lack of discrete reflection symmetries about equatorial planes in the chaotic behavior of the orbits, which is to be contrasted with the almost universal acceptance of reflection symmetries as default assumptions in galactic modeling. We also compare the related effects if we change a true central black hole by a Newtonian central mass. The numerical findings are: 1- The breakdown of the reflection symmetry about the equatorial plane in both Newtonian and relativistic core-shell models does i) enhance in a significant way the chaoticity of orbits in reflection symmetric oblate shell models and ii) inhibit significantly also the occurrence of chaos in reflection symmetric prolate shell models. In particular, in the prolate case the lack of the reflection symmetry provides the phase space with a robust family of regular orbits that is otherwise not found at higher energies. 2- The relative extents of the chaotic regions in the relativistic cases (i. e. with a true central black hole) are significantly larger than in the corresponding Newtonian ones (which have just a −1/r-1/r central potential).Comment: AASTEX, 22 pages plus 28 postscript figures, to appear in Ap.

    Kinematical and chemical vertical structure of the Galactic thick disk I. Thick disk kinematics

    Full text link
    The variation of the kinematical properties of the Galactic thick disk with Galactic height Z are studied by means of 412 red giants observed in the direction of the south Galactic pole up to 4.5 kpc from the plane. We confirm the non-null mean radial motion toward the Galactic anticenter found by other authors, but we find that it changes sign at |Z|=3 kpc, and the proposed inward motion of the LSR alone cannot explain these observations. The rotational velocity decreases with |Z| by -30 km/s/kpc, but the data are better represented by a power-law with index 1.25, similar to that proposed from the analysis of SDSS data. All the velocity dispersions increase with |Z|, but the vertical gradients are small. The dispersions grow proportionally, with no significant variation of the anisotropy. The ratio sigma_U/sigma_W=2 suggests that the thick disk could have formed from a low-latitude merging event. The vertex deviation increases with Galactic height, reaching ~20 degrees at |Z|=3.5 kpc. The tilt angle also increases, and the orientation of the ellipsoid in the radial-vertical plane is constantly intermediate between the alignment with the cylindrical and the spherical coordinate systems. The tilt angle at |Z|=2 kpc coincides with the expectations of MOND, but an extension of the calculations to higher |Z| is required to perform a conclusive test. Finally, between 2.5 and 3.5 kpc we detect deviations from the linear trend of many kinematical quantities, suggesting that some kinematical substructure could be present.Comment: Accepted for publication in Ap

    Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365

    Full text link
    We present a flexible and efficient method to construct triaxial dynamical models of galaxies with a central black hole, using Schwarzschild's orbital superposition approach. Our method is general and can deal with realistic luminosity distributions, which project to surface brightness distributions that may show position angle twists and ellipticity variations. The models are fit to measurements of the full line-of-sight velocity distribution (wherever available). We verify that our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model. In a companion paper (van de Ven, de Zeeuw & van den Bosch), we demonstrate that the method recovers the phase-space distribution function. We apply our method to two-dimensional observations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON, and study its internal structure, showing that the observed kinematically decoupled core is not physically distinct from the main body and the inner region is close to oblate axisymmetric.Comment: 21 Pages, 14 (Colour) Figures, Companion paper is arXiv:0712.0309 Accepted to MNRAS. Full resolution version at http://www.strw.leidenuniv.nl/~bosch/papers/RvdBosch_triaxmethod.pd

    Axisymmetric Three-Integral Models for Galaxies

    Get PDF
    We describe an improved, practical method for constructing galaxy models that match an arbitrary set of observational constraints, without prior assumptions about the phase-space distribution function (DF). Our method is an extension of Schwarzschild's orbit superposition technique. As in Schwarzschild's original implementation, we compute a representative library of orbits in a given potential. We then project each orbit onto the space of observables, consisting of position on the sky and line-of-sight velocity, while properly taking into account seeing convolution and pixel binning. We find the combination of orbits that produces a dynamical model that best fits the observed photometry and kinematics of the galaxy. A key new element of this work is the ability to predict and match to the data the full line-of-sight velocity profile shapes. A dark component (such as a black hole and/or a dark halo) can easily be included in the models. We have tested our method, by using it to reconstruct the properties of a two-integral model built with independent software. The test model is reproduced satisfactorily, either with the regular orbits, or with the two-integral components. This paper mainly deals with the technical aspects of the method, while applications to the galaxies M32 and NGC 4342 are described elsewhere (van der Marel et al., Cretton & van den Bosch). (abridged)Comment: minor changes, accepted for publication in the Astrophysical Journal Supplement

    Estimation of the Tilt of the Stellar Velocity Ellipsoid from RAVE and Implications for Mass Models

    Get PDF
    We present a measure of the inclination of the velocity ellipsoid at 1 kpc below the Galactic plane using a sample of red clump giants from the RAVE DR2 release. We find that the velocity ellipsoid is tilted towards the Galactic plane with an inclination of 7.3 +/-1.8 degree. We compare this value to computed inclinations for two mass models of the Milky Way. We find that our measurement is consistent with a short scale length of the stellar disc (Rd ~2 kpc) if the dark halo is oblate or with a long scale length (Rd~3 kpc) if the dark halo is prolate. Once combined with independent constraints on the flattening of the halo, our measurement suggests that the scale length is approximately halfway between these two extreme values, with a preferred range [2.5-2.7] kpc for a nearly spherical halo. Nevertheless, no model can be clearly ruled out. With the continuation of the RAVE survey, it will be possible to provide a strong constraint on the mass distribution of the Milky Way using refined measurements of the orientation of the velocity ellipsoid.Comment: Accepted for publication in MNRAS, 10 pages, 9 figures, 2 table

    Improved evidence for a black hole in M32 from HST/FOS spectra - II. Axisymmetric dynamical models

    Full text link
    Axisymmetric dynamical models are constructed for the E3 galaxy M32 to interpret high spatial resolution stellar kinematical HST data. Models are studied with two-integral phase-space distribution functions, and with fully general three- integral distribution functions. The latter are built using a new extension of Schwarzschild's orbit superposition approach. Models are constructed for inclinations of 90 and 55 degrees. No model without a nuclear dark object can fit the combined ground-based and HST data, independent of the dynamical structure of M32. Models with a nuclear dark object of 3.4 x 10^6 solar masses do provide an excellent fit. The inclined models provide the best fit, but the inferred dark mass does not depend sensitively on the assumed inclination. The models that best fit the data are not two-integral models, but like two-integral models they are azimuthally anisotropic. An extended dark object can fit the data only if its half-mass radius is r_h < 0.08 arcsec (=0.26 pc), implying a central dark matter density exceeding 1 x 10^8 solar masses / pc^3. This density is high enough to rule out most plausible alternatives to a massive black hole. The dynamically inferred dark mass is identical to that suggested by existing adiabatic black hole growth models for HST photometry of M32. The low activity of M32 implies either that only a very small fraction of the gas that is shed by evolving stars is accreted onto the black hole, or that accretion proceeds at very low efficiency, e.g. in an advection-dominated mode. (shortened version)Comment: 42 pages, LaTeX, with 15 PostScript figures. Submitted to the Astrophysical Journal. Postscript version with higher resolution figures available from http://www.sns.ias.edu/~marel/abstracts/abs_R21.htm

    Elliptical Galaxy Dynamics

    Get PDF
    A review of elliptical galaxy dynamics, with a focus on nonintegrable models. Topics covered include torus construction; modelling axisymmetric galaxies; triaxiality; collisionless relaxation; and collective instabilities.Comment: 97 Latex pages, 14 Postscript figures, uses aastex. To appear in Publications of the Astronomical Society of the Pacific, February 199

    Three-dimensional galactic stellar orbits

    No full text
    Wetensch. publicati
    corecore