553 research outputs found

    Performance of Preload on Cohesionless Soils

    Get PDF
    Common occurrence of loose normally consolidated fine sands and silts extending to considerable depths necessitates the utilization of ground improvement techniques along the coasts of Arabian Peninsula. In the case considered, the soil profile consisted of twenty meter thick compressible sands, and preloading technique was suggested to stabilize the foundation soil. The paper presents the performance of the preloading and the level of soil improvement achieved. The observed settlements and settlement-time behaviour are compared with the values estimated from various methods. The soil parameters back calculated from measured field behaviour are reported

    High carrier concentration induced effects on the bowing parameter and the temperature dependence of the band gap of Ga<sub>x</sub>In<sub>1−x</sub>N

    Get PDF
    The influence of intrinsic carrier concentration on the compositional and temperature dependence of the bandgap of GaxIn1-xN is investigated in nominally undoped samples with Ga fractions of x = 0.019, 0.062, 0.324, 0.52, and 0.56. Hall Effect results show that the free carrier density has a very weak temperature dependence and increases about a factor of 4, when the Ga composition increases from x = 0.019 to 0.56. The photoluminescence (PL) peak energy has also weak temperature dependence shifting to higher energies and the PL line shape becomes increasingly asymmetrical and broadens with increasing Ga composition. The observed characteristics of the PL spectra are explained in terms of the transitions from free electron to localized tail states and the high electron density induced many-body effects. The bowing parameter of GaxIn1-xN is obtained from the raw PL data as 2.5 eV. However, when the high carrier density induced effects are taken into account, it increases by about 14% to 2.9 eV. Furthermore, the temperature dependence of the PL peak becomes more pronounced and follows the expected temperature dependence of the bandgap variation

    Degradation of Toxic Indigo Carmine Dye by Electrosynthesized Ferrate (VI)

    Get PDF
    Response surface methodology was applied for optimizing indigo carmine (IC) dye removal by electrochemically produced ferrate (VI). Box-Behnken design was employed in this study, and design parameters were pH, Fe (VI) dose and initial dye concentration (Co). R2 and adjusted R2 values were very high that indicated very good accuracy for the employed model. Optimum operational conditions were: 4.08-7.69 for pH, 24-118.83 mg/L for Fe (VI) dose and 60.68-99.13 mg/L for complete removal of IC. Produced by electrochemical method Ferrate (VI) provides high effectiveness for IC dye-containing synthetic wastewater

    Rare hemoglobin variant Hb Yaizu observed in Turkey

    Get PDF
    Objective: To determine the characteristic features of the rare hemoglobin (Hb) variant Hb Yaizu to enable laboratory diagnosis of the hemoglobin variants during screening programs. Materials and Methods: Genomic DNA was obtained from the 4 members of a family living in Denizli province, an Aegean region of Turkey. Blood cell counts, hemoglobin composition, hemoglobin electrophoresis (both alkaline and acid), HPLC analysis, DNA sequencing and beta globin gene cluster haplotypes were done. Results: Hb Yaizu carriers were apparently healthy individuals. Hb Yaizu was slightly faster than Hb S at alkaline pH, but slower than Hb S at acidic pH in hemoglobin electrophoresis. An abnormal hemoglobin peak was observed with a retention time of 4.77 min in HPLC analysis attributed to Hb Yaizu. Two members of the family were heterozygous Hb Yaizu [beta 79(EF3) Asp>Asn] confirmed by DNA sequencing. The mutation was found to be linked with the Mediterranean haplotype I [+ - - ++]. Conclusion: We have presented the details of Hb Yaizu, a rare hemoglobin variant that may be important to hemoglobinopathy screening programs, although its clinical significance is unclear. Copyright © 2008 S. Karger AG

    Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field

    Full text link
    We have presented dynamic phase transition features and stationary-state behavior of a ferrimagnetic small nanoparticle system with a core-shell structure. By means of detailed Monte Carlo simulations, a complete picture of the phase diagrams and magnetization profiles have been presented and the conditions for the occurrence of a compensation point TcompT_{comp} in the system have been investigated. According to N\'{e}el nomenclature, the magnetization curves of the particle have been found to obey P-type, N-type and Q-type classification schemes under certain conditions. Much effort has been devoted to investigation of hysteretic response of the particle and we observed the existence of triple hysteresis loop behavior which originates from the existence of a weak ferromagnetic core coupling Jc/JshJ_{c}/J_{sh}, as well as a strong antiferromagnetic interface exchange interaction Jint/JshJ_{int}/J_{sh}. Most of the calculations have been performed for a particle in the presence of oscillating fields of very high frequencies and high amplitudes in comparison with exchange interactions which resembles a magnetic system under the influence of ultrafast switching fields. Particular attention has also been paid on the influence of the particle size on the thermal and magnetic properties, as well as magnetic features such as coercivity, remanence and compensation temperature of the particle. We have found that in the presence of ultrafast switching fields, the particle may exhibit a dynamic phase transition from paramagnetic to a dynamically ordered phase with increasing ferromagnetic shell thickness.Comment: 12 pages, 12 figure

    A systematic literature review of the use of social media for business process management

    Get PDF
    In today’s expansion of new technologies, innovation is found necessary for organizations to be up to date with the latest management trends. Although organizations are increasingly using new technologies, opportunities still exist to achieve the nowadays essential omnichannel management strategy. More precisely, social media are opening a path for benefiting more from an organization’s process orientation. However, social media strategies are still an under-investigated field, especially when it comes to the research of social media use for the management and improvement of business processes or the internal way of working in organizations. By classifying a variety of articles, this study explores the evolution of social media implementation within the BPM discipline. We also provide avenues for future research and strategic implications for practitioners to use social media more comprehensively

    Evaluation of rate law approximations in bottom-up kinetic models of metabolism.

    Get PDF
    BackgroundThe mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.ResultsIn this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations.ConclusionsOverall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches

    What Is the Important Point Related to Follow-Up Sonographic Evaluation for the Developmental Dysplasia of the Hip?

    Get PDF
    Developmental dysplasia of the hip (DDH) is an important cause of childhood disability. Subluxation or dislocation can be diagnosed through pediatric physical examination; nevertheless, the ultrasonographic examination is necessary in diagnosing certain borderline cases. It has been evaluated routine sonographic examination of 2,444 hips of 1,222 babies to determine differences in both, developmental dysplasia and types of hips, and evaluated their development on the 3-month follow-up. Evaluating the pathologic alpha angles under 59, there was no statistically significant differences between girls and boys in both right (55.57 +/- 3.73) (56.20 +/- 4.01), (p = 0.480), and left (55.79 +/- 3.96) (57.00 +/- 3.84), (p = 0.160) hips on the 45th day of life. Routine sonographic examinations on the 45th day of life revealed that 51 of (66.2%) 77 type 2a right hips were girls and 26 (33.8%) were boys. The number of the right hips that develop into type 1 was 38 (74.5%) for girls and 26 (100%) for boys on the 90th day of life (p = 0.005). A total of 87 type 2a left hips included 64 girls (73.6%) and 23 boys (26.4%). In the 90th day control, 49 right hip of girls (76.6%) and 21 right hip of boys (91.3%) developed into type 1 (p = 0.126). In the assessment of both left and right hips, girls showed a significantly higher frequency in latency and boys showed significantly higher development in the control sonography. A total of 31 girls (2.5%) and 11 boys (0.9%) accounted for a total of 42 (3.4%) cases who showed bilateral type 2a hips in 1,222 infants. On the 90th day control, 26 girls (83.9%) and all 11 boys (100%) developed into type 1 (p = 0.156). The study emphasizes the importance of the sonographic examination on the 90th day of life. Results of the investigation include the data of sonographic screening of DDH on the 45th day, and also stress the importance of the 90th-day control sonography after a close follow-up with physical examination between 45th and 90th days of life

    Global identification helps increase identity integration among Turkish gay men

    Get PDF
    Globalisation provides novel contexts for individuals to express and transform their identities in ways that may not be available in their local cultures. For gay men living in cultures where traditional masculinity norms prescribe heterosexuality and the rejection of homosexuality, gay-male identity is inherently threatened. However, adopting an identity as a ‘global citizen’ may increase the compatibility between gay and male identities, and hence augment well-being. We conducted an experiment with a community sample of 220 gay men in Turkey, manipulating pro- and anti-globalisation world views. Priming with pro-globalisation world views increased people’s identification as global citizens, and thus indirectly led to higher gay-male identity integration. Identity integration, in turn, predicted higher subjective well-being. This study brings the first experimental evidence on the link between global identification and gay-male identity integration. Beyond its local focus on the cultural context of Turkey, it highlights the importance of an intersectional approach to studying social identities by showing how the compatibility of two social identities can be increased by adopting a third social identity

    Transparent carbon nanotubes promote the outgrowth of enthorino-dentate projections in lesioned organ slice cultures

    Get PDF
    The increasing engineering of carbon-based nanomaterials as components of neuro-regenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favour dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned Entorhinal-Hippocampal Complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fibre sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering. This article is protected by copyright. All rights reserved
    corecore