105 research outputs found

    Die Hybridanlage zur Stromerzeugung

    Get PDF

    “It’s Not Smooth Sailing”: Bridging the Gap Between Methods and Content Expertise in Public Health Guideline Development

    Get PDF
    Background: The development of reliable, high quality health-related guidelines depends on explicit and transparent processes, methods aimed at minimising risks of bias and the inclusion of all relevant expertise and perspectives. While the methodological aspects of guidelines have been a focus to improve their quality, less is known about the social processes involved, for example, how guideline group members interact and communicate with one another, and how the evidence is considered in informing recommendations. With this in in mind, we aimed to empirically examine the perspectives and experiences of the key participants involved in developing public health guidelines for the Australian National Health and Medical Research Council (NHMRC). Design: This study was conducted using constructivist grounded theory as described by Charmaz, which informed our sampling, data collection, coding and analysis of interviews with key participants involved in developing public health guidelines.Setting: Australian public health guidelines commissioned by the NHMRC.Participants: Twenty experts that were involved in Australian NHMRC public health guideline development, including working committee members with content topic expertise (n = 16) and members of evidence review groups responsible for evaluating the evidence (n = 4).Results: Public health guideline development in Australia is a divided process. The division is driven by 3 related factors: the divergent disciplinary background and expertise that each group brings to the process; the methodological limitations of the framework, inherited from clinical medicine, that is used to assess the evidence; and barriers to communication between content experts and evidence reviewers around respective roles and methodological limitations.Conclusion: Our findings suggest several improvements for a more functional and unified guideline development process: greater education of the working committee on the methodological process employed to evaluate evidence, improved communication on the role of the evidence review groups and better facilitation of the process so that the evidence review groups feel their contribution is valued

    A retrospective analysis of recurrent pediatric ependymoma reveals extremely poor survival and ineffectiveness of current treatments across central nervous system locations and molecular subgroups

    Get PDF
    BackgroundRelapse occurs in 50% of pediatric ependymoma cases and has poor prognosis. Few studies have investigated the clinical progress of relapsed disease, and treatment lacks a standardized approach.Methods and materialsWe analyzed 302 pediatric ependymoma cases. Tumor, demographic, and treatment variables were investigated for association with relapse risk, time to recurrence, and survival after relapse. DNA methylation profiling was performed for 135/302 cases, and predominant subgroups were EPN_PFA (n = 95) and EPN_RELA (n = 24). Chromosome 1q status was ascertained for 185/302 cases by fluorescent in‐situ hybridization (FISH), multiplex ligation‐dependent probe amplification (MLPA), and DNA methylation profiles. ResultsSixty‐two percent of cases relapsed, with a median of two recurrences with no difference between posterior fossa and supratentorial locations (66% vs 55% relapse rate). One hundred seventeen (38%) cases relapsed within two years and five (2%) beyond 10 years. The late relapses were clinically heterogeneous. Tumor grade and treatment affected risk and time to relapse variably across subgroups. After relapse, surgery and irradiation delayed disease progression with a minimal impact on survival across the entire cohort. In the EPN_PFA and EPN_RELA groups, 1q gain was independently associated with relapse risk (subhazard ratio [SHR] 4.307, P = 0.027 and SHR 1.982, P = 0.010, respectively) while EPN_PFA had increased relapse risk compared with EPN_RELA (SHR = 0.394, P = 0.018). ConclusionsRecurrent pediatric ependymoma is an aggressive disease with poor outcomes, for which current treatments are inadequate. We report that chromosome 1q gain increases relapse risk in common molecular subgroups in children but a deeper understanding of the underlying biology at relapse and novel therapeutic approaches are urgently needed

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Multi-omic approach identifies hypoxic tumor-associated myeloid cells that drive immunobiology of high-risk pediatric ependymoma.

    Get PDF
    Ependymoma (EPN) is a devastating childhood brain tumor. Single-cell analyses have illustrated the cellular heterogeneity of EPN tumors, identifying multiple neoplastic cell states including a mesenchymal-differentiated subpopulation which characterizes the PFA1 subtype. Here, we characterize the EPN immune environment, in the context of both tumor subtypes and tumor cell subpopulations using single-cell sequencing (scRNAseq, n = 27), deconvolution of bulk tumor gene expression (n = 299), spatial proteomics (n = 54), and single-cell cytokine release assays (n = 12). We identify eight distinct myeloid-derived subpopulations from which a group of cells, termed hypoxia myeloid cells, demonstrate features of myeloid-derived suppressor cells, including IL6/STAT3 pathway activation and wound healing ontologies. In PFA tumors, hypoxia myeloid cells colocalize with mesenchymal-differentiated cells in necrotic and perivascular niches and secrete IL-8, which we hypothesize amplifies the EPN immunosuppressive microenvironment. This myeloid cell-driven immunosuppression will need to be targeted for immunotherapy to be effective in this difficult-to-cure childhood brain tumor. [Abstract copyright: Š 2023 The Author(s).

    Assessment of Cannabidiol and ∆9-Tetrahydrocannabiol in Mouse Models of Medulloblastoma and Ependymoma

    Get PDF
    Children with medulloblastoma and ependymoma are treated with a multidisciplinary approach that incorporates surgery, radiotherapy, and chemotherapy; however, overall survival rates for patients with high-risk disease remain unsatisfactory. Data indicate that plant-derived cannabinoids are effective against adult glioblastoma; however, preclinical evidence supporting their use in pediatric brain cancers is lacking. Here we investigated the potential role for ∆9- tetrahydrocannabinol (THC) and cannabidiol (CBD) in medulloblastoma and ependymoma. Dose- dependent cytotoxicity of medulloblastoma and ependymoma cells was induced by THC and CBD in vitro, and a synergistic reduction in viability was observed when both drugs were combined. Mechanistically, cannabinoids induced cell cycle arrest, in part by the production of reactive oxygen species, autophagy, and apoptosis; however, this did not translate to increased survival in orthotopic transplant models despite being well tolerated. We also tested the combination of cannabinoids with the medulloblastoma drug cyclophosphamide, and despite some in vitro synergism, no survival advantage was observed in vivo. Consequently, clinical benefit from the use of cannabinoids in the treatment of high-grade medulloblastoma and ependymoma is expected to be limited. This study emphasizes the importance of preclinical models in validating therapeutic agent efficacy prior to clinical trials, ensuring that enrolled patients are afforded the most promising therapies available

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants

    Get PDF
    Multiple independent genomic profiling efforts have recently identified clinically and molecularly distinct subgroups of ependymoma arising from all three anatomic compartments of the central nervous system (supratentorial brain, posterior fossa, and spinal cord). These advances motivated a consensus meeting to discuss: (1) the utility of current histologic grading criteria, (2) the integration of molecular-based stratification schemes in future clinical trials for patients with ependymoma and (3) current therapy in the context of molecular subgroups. Discussion at the meeting generated a series of consensus statements and recommendations from the attendees, which comment on the prognostic evaluation and treatment decisions of patients with intracranial ependymoma (WHO Grade II/III) based on the knowledge of its molecular subgroups. The major consensus among attendees was reached that treatment decisions for ependymoma (outside of clinical trials) should not be based on grading (II vs III). Supratentorial and posterior fossa ependymomas are distinct diseases, although the impact on therapy is still evolving. Molecular subgrouping should be part of all clinical trials henceforth

    Small molecule activators of the Trk receptors for neuroprotection

    Get PDF
    The neurotophin signaling network is critical to the development and survival of many neuronal populations. Especially sensitive to imbalances in the neurotrophin system, cholinergic neurons in the basal forebrain are progressively lost in Alzheimer's disease. Therapeutic use of neurotrophins to prevent this loss is hampered, however, by a number of pharmacological challenges. These include a lack of transport across the blood-brain barrier, rapid degradation in the circulation, and difficulty in production. In this review we discuss the evidence supporting the neurotrophin system's role in preventing neurodegeneration and survey some of the pharmacological strategies being pursued to develop effective therapeutics targeting neurotrophin function

    Lifelong Reduction of LDL-Cholesterol Related to a Common Variant in the LDL-Receptor Gene Decreases the Risk of Coronary Artery Disease—A Mendelian Randomisation Study

    Get PDF
    Rare mutations of the low-density lipoprotein receptor gene (LDLR) cause familial hypercholesterolemia, which increases the risk for coronary artery disease (CAD). Less is known about the implications of common genetic variation in the LDLR gene regarding the variability of cholesterol levels and risk of CAD.Imputed genotype data at the LDLR locus on 1 644 individuals of a population-based sample were explored for association with LDL-C level. Replication of association with LDL-C level was sought for the most significant single nucleotide polymorphism (SNP) within the LDLR gene in three European samples comprising 6 642 adults and 533 children. Association of this SNP with CAD was examined in six case-control studies involving more than 15 000 individuals.Each copy of the minor T allele of SNP rs2228671 within LDLR (frequency 11%) was related to a decrease of LDL-C levels by 0.19 mmol/L (95% confidence interval (CI) [0.13-0.24] mmol/L, p = 1.5x10(-10)). This association with LDL-C was uniformly found in children, men, and women of all samples studied. In parallel, the T allele of rs2228671 was associated with a significantly lower risk of CAD (Odds Ratio per copy of the T allele: 0.82, 95% CI [0.76-0.89], p = 2.1x10(-7)). Adjustment for LDL-C levels by logistic regression or Mendelian Randomisation models abolished the significant association between rs2228671 with CAD completely, indicating a functional link between the genetic variant at the LDLR gene locus, change in LDL-C and risk of CAD.A common variant at the LDLR gene locus affects LDL-C levels and, thereby, the risk for CAD
    • …
    corecore