221 research outputs found

    Increased Efficiency: Formulary Drug Conversion Automation Using Visual Basic-Based Macros with Attachmate Reflections in the Pharmacy Setting

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Health care automation provides opportunities for health care agencies to save time, save money, and increase patient safety. The Department of Veterans Affairs medical centers use a program, Attachmate Reflections, for pharmacy medication order verification. This program is a command line interface that allows the use of macros, or programmed automated routines, that have the ability to automate repetitive tasks. Through the use of macro programming at the VISN 11 VA medical centers, this author was able to automate converting patients from Combivent MDI inhalers to its successor Combivent Respimat inhalers due to the MDI inhaler being withdrawn from the market. Usage of the macro resulted in a time savings of 649.1 hours, cost savings of $32,748.36, and increased patient safety by providing consistent medication instructions, correct dispense quantities, correct prescription day supply, and correct number of refills remaining on the prescription

    Nonclassic lipoid congenital adrenal hyperplasia masquerading as familial glucocorticoid deficiency

    Get PDF
    Context: Familial glucocorticoid deficiency (FGD) is an autosomal recessive disorder resulting from resistance to the action of ACTH on the adrenal cortex. Affected individuals are deficient in cortisol and, if untreated, are likely to succumb to hypoglycemia and/or overwhelming infection. Mutations of the ACTH receptor (MC2R) and the melanocortin 2 receptor accessory protein (MRAP), FGD types 1 and 2 respectively, account for approximately 45% of cases. Objective: A locus on chromosome 8 has previously been linked to the disease in three families, but no underlying gene defect has to date been identified. Design: The study design comprised single-nucleotide polymorphism genotyping and mutation detection. Setting: The study was conducted at secondary and tertiary referral centers. Patients: Eighty probands from families referred for investigation of the genetic cause of FGD participated in the study. Interventions: There were no interventions. Results: Analysis by single-nucleotide polymorphism array of the genotype of one individual with FGD previously linked to chromosome 8 revealed a large region of homozygosity encompassing the steroidogenic acute regulatory protein gene, STAR. We identified homozygous STAR mutations in this patient and his affected siblings. Screening of our total FGD patient cohort revealed homozygous STAR mutations in a further nine individuals from four other families. Conclusions: Mutations in STAR usually cause lipoid congenital adrenal hyperplasia, a disorder characterized by both gonadal and adrenal steroid deficiency. Our results demonstrate that certain mutations in STAR (R192C and the previously reported R188C) can present with a phenotype indistinguishable from that seen in FGD

    Relacion Entre La Densidad Óptima Agronomica Y El Número De Granos Por Planta En Maíz (Zea Maysl.)

    Get PDF
    The density of sowing (D) is one of the main management practices that influences the yield (Y) of corn. There exists a density value in which the yield is maximum (OPD), depending on the environment, the genotype and its interaction. The objectives of this project were: i-To determine the OPD for two corn genotypes in different productive environments; ii- Analyze the relationship between the number of kernel fixed per plant (KNP) and its plant growing rate (PGR) to different environments and genotypes iii- Determine the KNP that is related to the OPD for two corn genotypes. Three experiments were carried out in different locations (L) of Córdoba (Argentina) during 2013/14, comparing 2 genotypes (G) in 2 management zones (MZ). The statistical design was random blocks, with a factorial arrangement of subdivided plots, with L, MZ and G being the primary, secondary and tertiary factors, respectively. In addition, 5 D were planted to obtain the relationships that estimate OPD, PGR, KNP and Y. The results indicate that OPD was affected by L; the relationship between PGR and KNP was not modified by the environment, but by G. The PGR coincident with the OPD was modified by the G interaction: L. The OPD the PGR was between 2.74 to 4.81 g d -1 , which were associated with the NGP that varied only between 509 and 603 grains p-1

    Geometry and slip rate of the Aigion fault, a young normal fault system in the western Gulf of Corinth

    No full text
    The Aigion fault is one of the youngest major normal faults in the Gulf of Corinth, Greece, with an immature displacement profile. Based on geometry, slip rate and comparison with regional faults, we estimate the fault system length at ~10 km. We find the slip rate of the fault system is ~3.5 ± 1 mm/yr decreasing to ~2.5 ± 0.7 mm/yr close to its eastern tip. Complex fault geometry and displacement profiles on the shelf east of Aigion are consistent with the latter as the eastern tip location. Analysis of slip on this fault system and the established fault to the south (Western Eliki Fault) suggests that slip was transferred rapidly but not homogeneously between the two faults during the period of contemporaneous activity. Together with a lack of evidence of lateral propagation at the eastern fault tip in the last 10–13 k.y., we suggest that the fault developed and established its current length rapidly, within its 200–300 k.y. history. These results contribute to our understanding of the process of northward fault migration into the rift and the development of new normal faults

    Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies

    Get PDF
    Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1s dsDNA genome consists of 163,095bp and encodes 271 proteins, exhibiting low DNA (10kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the Project PTDC/BBB-BSS/6471/2014 (POCI-01-0145-FEDER-016678). RL contributed to the genome sequencing analysis, supported by the KU Leuven GOA Grant ‘Phage Biosystems’. JP acknowledges the project R-3986 of the Herculesstichting.info:eu-repo/semantics/publishedVersio

    Link between Intestinal CD36 Ligand Binding and Satiety Induced by a High Protein Diet in Mice

    Get PDF
    CD36 is a ubiquitous membrane glycoprotein that binds long-chain fatty acids. The presence of a functional CD36 is required for the induction of satiety by a lipid load and its role as a lipid receptor driving cellular signal has recently been demonstrated. Our project aimed to further explore the role of intestinal CD36 in the regulation of food intake. Duodenal infusions of vehicle or sulfo-N-succinimidyl-oleate (SSO) was performed prior to acute infusions of saline or Intralipid (IL) in mice. Infusion of minute quantities of IL induced a decrease in food intake (FI) compared to saline. Infusion of SSO had the same effect but no additive inhibitory effect was observed in presence of IL. No IL- or SSO-mediated satiety occurred in CD36-null mice. To determine whether the CD36-mediated hypophagic effect of lipids was maintained in animals fed a satietogen diet, mice were subjected to a High-Protein diet (HPD). Concomitantly with the satiety effect, a rise in intestinal CD36 gene expression was observed. No satiety effect occurred in CD36-null mice. HPD-fed WT mice showed a diminished FI compared to control mice, after saline duodenal infusion. But there was no further decrease after lipid infusion. The lipid-induced decrease in FI observed on control mice was accompanied by a rise in jejunal oleylethanolamide (OEA). Its level was higher in HPD-fed mice than in controls after saline infusion and was not changed by lipids. Overall, we demonstrate that lipid binding to intestinal CD36 is sufficient to produce a satiety effect. Moreover, it could participate in the satiety effect induced by HPD. Intestine can modulate FI by several mechanisms including an increase in OEA production and CD36 gene expression. Furthermore, intestine of mice adapted to HPD have a diminished capacity to modulate their food intake in response to dietary lipids

    Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

    Get PDF
    Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression
    corecore