408 research outputs found

    Scaling in a SU(2)/Z_3 model of cosmic superstring networks

    Get PDF
    Motivated by recent developments in superstring theory in the cosmological context, we examine a field theory which contains string networks with 3-way junctions. We perform numerical simulations of this model, identify the length scales of the network that forms, and provide evidence that the length scales tend towards a scaling regime, growing in proportion to time. We infer that the presence of junctions does not in itself cause a superstring network to dominate the energy density of the early Universe.Comment: 12pp, 3 fig

    Gravitational Waves Probe the Coalescence Rate of Massive Black Hole Binaries

    Get PDF
    We calculate the expected nHz--μ\muHz gravitational wave (GW) spectrum from coalescing Massive Black Hole (MBH) binaries resulting from mergers of their host galaxies. We consider detection of this spectrum by precision pulsar timing and a future Pulsar Timing Array. The spectrum depends on the merger rate of massive galaxies, the demographics of MBHs at low and high redshift, and the dynamics of MBH binaries. We apply recent theoretical and observational work on all of these fronts. The spectrum has a characteristic strain hc(f) 10−15(f/yr−1)−2/3h_c(f)~10^{-15} (f/yr^{-1})^{-2/3}, just below the detection limit from recent analysis of precision pulsar timing measurements. However, the amplitude of the spectrum is still very uncertain owing to approximations in the theoretical formulation of the model, to our lack of knowledge of the merger rate and MBH population at high redshift, and to the dynamical problem of removing enough angular momentum from the MBH binary to reach a GW-dominated regime.Comment: 31 Pages, 8 Figures, small changes to match the published versio

    Using Pulsars to Detect Massive Black Hole Binaries via Gravitational Radiation: Sagittarius A* and Nearby Galaxies

    Get PDF
    Pulsar timing measurements can be used to detect gravitational radiation from massive black hole binaries. The ~106d quasi-periodic flux variations in Sagittarius A* at radio wavelengths reported by Zhao, Bower, & Goss (2001) may be due to binarity of the massive black hole that is presumed to be responsible for the radio emission. A 106d equal-mass binary black hole is unlikely based on its short inspiral lifetime and other arguments. Nevertheless the reported quasi-periodicity has led us to consider whether the long-wavelength gravitational waves from a conjectured binary might be detected in present or future precision timing of millisecond pulsars. While present timing cannot reach the level expected for an equal-mass binary, we estimate that future efforts could. This inquiry has led us to further consider the detection of binarity in the massive black holes now being found in nearby galaxies. For orbital periods of ~2000d where the pulsar timing measurements are most precise, we place upper limits on the mass ratio of binaries as small as 0.06.Comment: 7 pages, 2 eps figures, accepted for publication in Ap

    Electrical photosemiconducting and paramagnetic properties of polypyromellitimides

    Get PDF
    Semiconducting properties with dark and photoconductivity, type r, were observed in polypyromellitimides (PPMI) and explained by a donor-acceptor interreaction in the PPMI between electron acceptor promellitimide fragments and electron donor diamide in adjacent macromolecules

    Massive graviton as a testable cold dark matter candidate

    Full text link
    We construct a consistent model of gravity where the tensor graviton mode is massive, while linearized equations for scalar and vector metric perturbations are not modified. The Friedmann equation acquires an extra dark-energy component leading to accelerated expansion. The mass of the graviton can be as large as ∼(1015cm)−1\sim (10^{15}{cm})^{-1}, being constrained by the pulsar timing measurements. We argue that non-relativistic gravitational waves can comprise the cold dark matter and may be detected by the future gravitational wave searches.Comment: 4 pages, final version to appear in PR

    Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays

    Get PDF
    We describe several new techniques which accelerate Bayesian searches for continuous gravitational-wave emission from supermassive black-hole binaries using pulsar timing arrays. These techniques mitigate the problematic increase of search-dimensionality with the size of the pulsar array which arises from having to include an extra parameter per pulsar as the array is expanded. This extra parameter corresponds to searching over the phase of the gravitational-wave as it propagates past each pulsar so that we can coherently include the pulsar-term in our search strategies. Our techniques make the analysis tractable with powerful evidence-evaluation packages like MultiNest. We find good agreement of our techniques with the parameter-estimation and Bayes factor evaluation performed with full signal templates, and conclude that these techniques make excellent first-cut tools for detection and characterisation of continuous gravitational-wave signals with pulsar timing arrays. Crucially, at low to moderate signal-to-noise ratios the factor by which the analysis is sped up can be > 100, permitting rigorous programs of systematic injection and recovery of signals to establish robust detection criteria within a Bayesian formalism.Comment: 17 pages, 10 figures, 1 table. Minor changes to reflect published versio

    Modelling of the evolution of a droplet cloud in a turbulent flow

    Get PDF
    The effects of droplet inertia and turbulent mixing on the droplet number density distribution in a turbulent flow field are studied. A formulation of the turbulent convective diffusion equation for the droplet number density, based on the modified Fully Lagrangian Approach, is proposed. The Fully Lagrangian Approach for the dispersed phase is extended to account for the Hessian of transformation from Eulerian to Lagrangian variables. Droplets with moderate inertia are assumed to be transported and dispersed by large scale structures of a filtered field in the Large Eddy Simulation (LES) framework. Turbulent fluctuations, not visible in the filtered solution for the droplet velocity field, induce an additional diffusion mass flux and hence additional dispersion of the droplets. The Lagrangian formulation of the transport equation for the droplet number density and the modified Fully Lagrangian Approach (FLA) make it possible to resolve the flow regions with intersecting droplet trajectories in the filtered flow field. Thus, we can cope successfully with the problems of multivalued filtered droplet velocity regions and caustic formation. The spatial derivatives for the droplet number density are calculated by projecting the FLA solution on the Eulerian mesh, resulting in a hybrid Lagrangian–Eulerian approach to the problem. The main approximations for the method are supported by the calculation of droplet mixing in an unsteady one-dimensional flow field formed by large-scale oscillations with an imposed small-scale modulation. The results of the calculations for droplet mixing in decaying homogeneous and isotropic turbulence are validated by the results of Direct Numerical Simulations (DNS) for several values of the Stokes number
    • …
    corecore