201 research outputs found
CpeT is the Phycoerythrobilin Lyase for Cys-165 on Beta-Phycoerythrin from Fremyella Diplosiphon and the Chaperone-like Protein CpeZ Greatly Improves its Activity.
Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is needed in order to correctly and efficiently attach PEB to the beta-subunit of PE. MS analyses of the recombinant beta-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and more phycocyanin than WT cells grown under green light, conditions which should maximize the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant strain when compared with WT, suggesting that CpeT may also play a direct or indirect regulatory role in transcription of these operons or their mRNA stability, in addition to its role as a PEB lyase for Cys-165 on beta-PE
Macrofossils and pollen representing forests of the pre-Taupo volcanic eruption (c. 1850 yr BP) era at Pureora and Benneydale, central North Island, New Zealand.
Micro- and macrofossil data from the remains of forests overwhelmed and buried at Pureora and Benneydale during the Taupo eruption (c. 1850 conventional radiocarbon yr BP) were compared. Classification of relative abundance data separated the techniques, rather than the locations, because the two primary clusters comprised pollen and litter/wood. This indicates that the pollen:litter/wood within-site comparisons (Pureora and Benneydale are 20 km apart) are not reliable. Plant macrofossils represented mainly local vegetation, while pollen assemblages represented a combination of local and regional vegetation. However, using ranked abundance and presence/absence data, both macrofossils and pollen at Pureora and Benneydale indicated conifer/broadleaved forest, of similar forest type and species composition at each site. This suggests that the forests destroyed by the eruption were typical of mid-altitude west Taupo forests, and that either data set (pollen or macrofossils) would have been adequate for regional forest interpretation.
The representation of c. 1850 yr BP pollen from the known buried forest taxa was generally consistent with trends determined by modern comparisons between pollen and their source vegetation, but with a few exceptions.
A pollen profile from between the Mamaku Tephra (c. 7250 yr BP) and the Taupo Ignimbrite indicated that the Benneydale forest had been markedly different in species dominance compared with the forest that was destroyed during the Taupo eruption. These differences probably reflect changes in drainage, and improvements in climate and/or soil fertility over the middle Holocene
Standardized Welfare Terms for the Zebrafish Community.
This is the final version of the article. It first appeared from Mary Ann Liebert via https://doi.org/10.1089/zeb.2016.1248Managing the welfare of laboratory animals is critical to animal health, vital in the understanding of phenotypes created by treatment or genetic alteration and ensures compliance of regulations. Part of an animal welfare assessment is the requirement to record observations, ensuring all those responsible for the animals are aware of their health status and can act accordingly. Although the use of zebrafish in research continues to increase, guidelines for conducting welfare assessments and the reporting of observations are considered unclear compared to mammalian species. To support the movement of zebrafish between facilities, significant improvement would be achieved through the use of standardized terms to ensure clarity and consistency between facilities. Improving the clarity of terminology around welfare not only addresses our ethical obligation but also supports the research goals and provides a searchable description of the phenotypes. A Collaboration between the Wellcome Trust Sanger Institute and Cambridge University (Department of Medicine-Laboratory of Molecular Biology) has led to the creation of the zebrafish welfare terms from which standardization of terminology can be achieved.This work was supported by the Wellcome Trust (grant no. 098051), the National Institutes of Health Office of Research Infrastructure Programs award (P40OD011021), the National Institutes of Health (grant no. A154503), National Institutes for Health Research to the Biomedical Research Centre (grant no. RG64229), and a Wellcome Trust Personal Research Fellowship (103950/Z/14/Z)
Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.
PMCID: PMC3591419This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils
Towards an optimal sampling strategy for assessing genetic variation within and among white clover (Trifolium repens L.) cultivars using AFLP
Cost reduction in plant breeding and conservation programs depends largely on correctly defining the minimal sample size required for the trustworthy assessment of intra- and inter-cultivar genetic variation. White clover, an important pasture legume, was chosen for studying this aspect. In clonal plants, such as the aforementioned, an appropriate sampling scheme eliminates the redundant analysis of identical genotypes. The aim was to define an optimal sampling strategy, i.e., the minimum sample size and appropriate sampling scheme for white clover cultivars, by using AFLP data (283 loci) from three popular types. A grid-based sampling scheme, with an interplant distance of at least 40 cm, was sufficient to avoid any excess in replicates. Simulations revealed that the number of samples substantially influenced genetic diversity parameters. When using less than 15 per cultivar, the expected heterozygosity (He) and Shannon diversity index (I) were greatly underestimated, whereas with 20, more than 95% of total intra-cultivar genetic variation was covered. Based on AMOVA, a 20-cultivar sample was apparently sufficient to accurately quantify individual genetic structuring. The recommended sampling strategy facilitates the efficient characterization of diversity in white clover, for both conservation and exploitation
Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation
Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations
The Impact of Recombination on Nucleotide Substitutions in the Human Genome
Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of crossovers (R2 = 47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots. We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations indicate that variations in population size or density in recombination hotspots can have a very strong impact on the evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of hotspot density between human and chimp
The N-Terminal residues 43 to 60 form the interface for dopamine mediated α-synuclein dimerisation
α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson's disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43-140) and C-terminally (1-95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA: α-syn oligomers, albeit 1-95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43-140 protein, we analysed the structural characteristics of the DA:α-syn 43-140 dimer and α-syn 43-140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers
- …