1,780 research outputs found
Critical properties of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model in the presence of a uniform field
In the presence of a uniform field the one-dimensional spin-
antiferromagnetic Heisenberg model develops zero frequency excitations at
field-dependent 'soft mode' momenta. We determine three types of critical
quantities, which we extract from the finite-size dependence of the lowest
excitation energies, the singularities in the static structure factors and the
infrared singularities in the dynamical structure factors at the soft mode
momenta. We also compare our results with the predictions of conformal field
theory.Comment: 12 pages, REVTEX, 7 figures, submitted to Physical Review
Stereochemical studies on protonated bridgehead amines. ^1H NMR determination of cis and trans B-C ring-fused structures for salts of hexahydropyrrolo [2,1-a] isoquinolines and related C ring homologs. Capture of unstable ring-fused structures in the solid state
Acid-addition salts of tricyclic isoquinolines 2a/b, 3a/b, 4a-4c, 5, 6a/b, 7, 8a/b, 9a/b, and 17a/b were studied by high-field ^1H NMR in CDCl_3 solution. Cis (e.g., 14 and 15 in Figure 1) and trans (e.g., 13)B-C ring-fused structures were identified by using the vicinal ^3J(CH-NH) coupling constants, which demonstrate a Karplus-like behavior. In some cases, we initially observed a trans form, which converted to a cis A form by N H proton exchange. For 4c.HBr, the exchange process was slowed by addition of trifluoroacetic acid. In many cases, cis A and cis B structures were preferred in solution. The pendant phenyl group exerted a strong influence on the preferred solution structure. Observation of the initial, unstable trans-fused structures was related to their capture in the solid state and release intact on dissolution. X-ray diffraction was performed on the HBr salts of 2a (B-C cis), 2b (B-C cis), and 4c (B-C trans). The result for 4c.HBr confirmed the connection between the initial trans form in solution and the solid state. For 17b.HCI two conformers, associated with hindered rotation about the bond connecting the 2,6-disubstituted phenyl group to the tricyclic array, were detected at ambient probe temperature; however, rotamers were not observed for either of the two forms (trans and cis A) of 17a.HBr. Two conformers were also found for 16b.HBr. Temperature-dependent behavior was recorded in the ^1H NMR spectra of 17b.HBr and 16b.HBr; the activation free energy for interconversion of conformers was estimated to be in the vicinity of 17 kcal/mol for the former and 14-15 kcal/mol for the latter. The ^1H NMR spectrum of butaclamol hydrochloride (20.HC1), a potent neuroleptic agent, in Me_2SO-d_6 revealed two species in a ratio of 81:19, which were assigned as trans and cis A forms, respectively. ^1H NMR data for various free bases are also presented and discussed. Empirical force field calculations on three model hydrocarbons are discussed from a perspective of finding an explanation for the configurational/conformational behavior of the bridgehead ammonium salts. Diverse literature examples of structures for protonated bridgehead amines are also discussed. A tentative rationale is suggested for the preference of cis A forms in some protonated tetrahydroisoquinoline derivatives
Weak Gravity Conjecture and Holographic Dark Energy Model with Interaction and Spatial Curvature
In the paper, we apply the weak gravity conjecture to the holographic
quintessence model of dark energy. Three different holographic dark energy
models are considered: without the interaction in the non-flat universe; with
interaction in the flat universe; with interaction in the non-flat universe. We
find that only in the models with the spatial curvature and interaction term
proportional to the energy density of matter, it is possible for the weak
gravity conjecture to be satisfied.Comment: 14 pages, 7 figures, typographical errors are corrected; conclusin is
unchange
The K-theory of the C*-algebras of 2-rank graphs associated to complete bipartite graphs
Using a result of Vdovina, we may associate to each complete connected
bipartite graph a -dimensional square complex, which we call a tile
complex, whose link at each vertex is . We regard the tile complex in
two different ways, each having a different structure as a -rank graph. To
each -rank graph is associated a universal C*-algebra, for which we compute
the K-theory, thus providing a new infinite collection of -rank graph
algebras with explicit K-groups. We determine the homology of the tile
complexes, and give generalisations of the procedures to complexes and systems
consisting of polygons with a higher number of sides.Comment: 24 pages, 9 figures. Revised 2020/10/05. Section 4 and Figure 8 added
Revised 2021/02/17. New figure (7) added. Changes made for clarit
Fast photon detection for the COMPASS RICH detector
The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring
Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a
wide momentum range. For the data taking in 2006, the COMPASS RICH has been
upgraded in the central photon detection area (25% of the surface) with a new
technology to detect Cherenkov photons at very high count rates of several 10^6
per second and channel and a new dead-time free read-out system, which allows
trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of
576 visible and ultra-violet sensitive multi-anode photomultipliers with 16
channels each. The upgraded detector showed an excellent performance during the
2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06
The Fast Read-out System for the MAPMTs of COMPASS RICH-1
A fast readout system for the upgrade of the COMPASS RICH detector has been
developed and successfully used for data taking in 2006 and 2007. The new
readout system for the multi-anode PMTs in the central part of the photon
detector of the RICH is based on the high-sensitivity MAD4
preamplifier-discriminator and the dead-time free F1-TDC chip characterized by
high-resolution. The readout electronics has been designed taking into account
the high photon flux in the central part of the detector and the requirement to
run at high trigger rates of up to 100 kHz with negligible dead-time. The
system is designed as a very compact setup and is mounted directly behind the
multi-anode photomultipliers. The data are digitized on the frontend boards and
transferred via optical links to the readout system. The read-out electronics
system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor
change
Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling
We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement
Microwave and Physical Electronics
Contains reports on six research projects.Office of Scientific Research and Development (OSRD) OEMsr-26
Azimuthal asymmetries of charged hadrons produced by high-energy muons scattered off longitudinally polarised deuterons
Azimuthal asymmetries in semi-inclusive production of positive (h^+) and
negative hadrons (h^-) have been measured by scattering 160 GeV muons off
longitudinally polarised deuterons at CERN. The asymmetries were decomposed in
several terms according to their expected modulation in the azimuthal angle phi
of the outgoing hadron. Each term receives contributions from one or several
spin and transverse-momentum-dependent parton distribution and fragmentation
functions. The amplitudes of all phi-modulation terms of the hadron asymmetries
integrated over the kinematic variables are found to be consistent with zero
within statistical errors, while the constant terms are nonzero and equal for
h^+ and h^- within the statistical errors. The dependencies of the
phi-modulated terms versus the Bjorken momentum fraction x, the hadron
fractional momentum z, and the hadron transverse momentum p_h^T were studied.
The x dependence of the constant terms for both positive and negative hadrons
is in agreement with the longitudinal double-spin hadron asymmetries, measured
in semi-inclusive deep-inelastic scattering. The x dependence of the sin
phi-modulation term is less pronounced than that in the corresponding HERMES
data. All other dependencies of the phi-modulation amplitudes are consistent
with zero within the statistical errors.Comment: 12 pages, 11 Figures; revision 1 signs in Eq 5 corrected, polishe
Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS
The longitudinal polarisation transfer from muons to lambda and anti-lambda
hyperons, D_LL, has been studied in deep inelastic scattering off an
unpolarised isoscalar target at the COMPASS experiment at CERN. The spin
transfers to lambda and anti-lambda produced in the current fragmentation
region exhibit different behaviours as a function of x and xF . The measured x
and xF dependences of D^lambda_LL are compatible with zero, while
D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The
resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and
D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the
frame of recent model calculations.Comment: 13 pages, 7 figure
- …
