Azimuthal asymmetries in semi-inclusive production of positive (h^+) and
negative hadrons (h^-) have been measured by scattering 160 GeV muons off
longitudinally polarised deuterons at CERN. The asymmetries were decomposed in
several terms according to their expected modulation in the azimuthal angle phi
of the outgoing hadron. Each term receives contributions from one or several
spin and transverse-momentum-dependent parton distribution and fragmentation
functions. The amplitudes of all phi-modulation terms of the hadron asymmetries
integrated over the kinematic variables are found to be consistent with zero
within statistical errors, while the constant terms are nonzero and equal for
h^+ and h^- within the statistical errors. The dependencies of the
phi-modulated terms versus the Bjorken momentum fraction x, the hadron
fractional momentum z, and the hadron transverse momentum p_h^T were studied.
The x dependence of the constant terms for both positive and negative hadrons
is in agreement with the longitudinal double-spin hadron asymmetries, measured
in semi-inclusive deep-inelastic scattering. The x dependence of the sin
phi-modulation term is less pronounced than that in the corresponding HERMES
data. All other dependencies of the phi-modulation amplitudes are consistent
with zero within the statistical errors.Comment: 12 pages, 11 Figures; revision 1 signs in Eq 5 corrected, polishe