325 research outputs found
Bofutsushosan, a Japanese herbal (Kampo) medicine, attenuates progression of nonalcoholic steatohepatitis in mice
BACKGROUND: Obesity-induced liver disease (nonalcoholic fatty liver disease, NAFLD) is now the commonest cause of chronic liver disease in affluent nations. There are presently no proven treatments for NAFLD or its more severe stage, nonalcoholic steatohepatitis (NASH). Bofutsushosan (BTS), a Japanese herbal (Kampo) medicine, long used as an anti-obesity medicine in Japan and other Asian countries, has been shown to reduce body weight and improve insulin resistance (IR) and hepatic steatosis. The precise mechanism of action of BTS, however, remains unclear. To evaluate the ability of BTS to prevent the development of NASH, and determine the mediators and pathways involved. METHODS: C57BL/6 mice were injected intra-peritoneally with gold-thioglucose and fed a high-fat diet (HF) or HF diet admixed with either 2 or 5 % BTS for 12 weeks. The effectiveness of BTS in attenuating features of NASH and the mechanisms through which BTS attenuated NASH were then assayed through an assessment of the anthropometric, radiological, biochemical and histological parameters. RESULTS: BTS attenuated the progression of NASH through induction of adiponectin and its receptors along with an induction of PPAR-α and PPAR-γ, decreased expression of SREBP-1c, increased hepatic fatty acid oxidation and increased hepatic export of triglycerides. BTS moreover, reduced IR through phosphorylation of the protein kinase, Akt. CONCLUSIONS: BTS through induction of adiponectin signaling and Akt attenuated development of NASH. Identification of the active entity in BTS should allow development of novel treatments for NASH. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00535-013-0852-8) contains supplementary material, which is available to authorized users
Localized bioconvection of Euglena caused by phototaxis in the lateral direction
Euglena, a swimming micro-organism, exhibited a characteristic bioconvection
that was localized at the center of a sealed chamber under bright illumination
to induce negative phototaxis. This localized pattern consisted of high-density
spots, in which convection was found. These observations were reproduced by a
mathematical model that was based on the phototaxis of individual cells in both
the vertical and lateral directions. Our results indicate that this convection
is maintained by upward swimming, as with general bioconvection, and the
localization originates from lateral phototaxis
Trial Outcome and Associative Learning Signals in the Monkey Hippocampus
In tasks of associative learning, animals establish new links between unrelated items by using information about trial outcome to strengthen correct/rewarded associations and modify incorrect/unrewarded ones. To study how hippocampal neurons convey information about reward and trial outcome during new associative learning, we recorded hippocampal neurons as monkeys learned novel object-place associations. A large population of hippocampal neurons (50%) signaled trial outcome by differentiating between correct and error trials during the period after the behavioral response. About half these cells increased their activity following correct trials (correct up cells) while the remaining half fired more following error trials (error up cells). Moreover, correct up cells, but not error up cells, conveyed information about learning by increasing their stimulus-selective response properties with behavioral learning. These findings suggest that information about successful trial outcome conveyed by correct up cells may influence new associative learning through changes in the cell's stimulus-selective response properties.National Institutes of Health (U.S.) (NIH grant MH48847)National Institutes of Health (U.S.) (NIH Award DA015644)National Institutes of Health (U.S.) (NIH Award MH59733)National Institutes of Health (U.S.) (NIH grant MH071847)National Institutes of Health (U.S.) (NIH grant DP1 OD003646)Fondation pour la recherche médical
Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion
BACKGROUND:Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS:The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+) ([Ca(2+)](c)) and cAMP ([cAMP](c)) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+)](c). The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+)](c) response. The effect of sucralose on [Ca(2+)](c) was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q) inhibitor. Sucralose also induced sustained elevation of [cAMP](c), which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS:Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+) and cAMP-dependent mechanisms
LV-pIN-KDEL: a novel lentiviral vector demonstrates the morphology, dynamics and continuity of the endoplasmic reticulum in live neurones
BACKGROUND
The neuronal endoplasmic reticulum (ER) is an extensive, complex endomembrane system, containing Ca2+ pumps, and Ca2+ channels that permit it to act as a dynamic calcium store. Currently, there is controversy over the continuity of the ER in neurones, how this intersects with calcium signalling and the possibility of physical compartmentalisation. Unfortunately, available probes of ER structure such as vital dyes are limited by their membrane specificity. The introduction of ER-targeted GFP plasmids has been a considerable step forward, but these are difficult to express in neurones through conventional transfection approaches. To circumvent such problems we have engineered a novel ER-targeted GFP construct, termed pIN-KDEL, into a 3rd generation replication-defective, self-inactivating lentiviral vector system capable of mediating gene transduction in diverse dividing and post-mitotic mammalian cells, including neurones.
RESULTS
Following its expression in HEK293 (or COS-7) cells, LV-pIN-KDEL yielded a pattern of fluorescence that co-localised exclusively with the ER marker sec61beta but with no other major organelle. We found no evidence for cytotoxicity and only rarely inclusion body formation. To explore the utility of the probe in resolving the ER in live cells, HEK293 or COS-7 cells were transduced with LV-pIN-KDEL and, after 48 h, imaged directly at intervals from 1 min to several hours. LV-pIN-KDEL fluorescence revealed the endoplasmic reticulum as a tubular lattice structure whose morphology can change markedly within seconds. Although GFP can be phototoxic, the integrity of the cells and ER was retained for several weeks and even after light exposure for periods up to 24 h. Using LV-pIN-KDEL we have imaged the ER in diverse fixed neuronal cultures and, using real-time imaging, found evidence for extensive, dynamic remodelling of the neuronal ER in live hippocampal cultures, brain slices, explants and glia. Finally, through a Fluorescence Loss in Photobleaching (FLIP) approach, continuous irradiation at a single region of interest removed all the fluorescence of LV-pIN-KDEL-transduced nerve cells in explant cultures, thus, providing compelling evidence that in neurons the endoplasmic reticulum is not only dynamic but also continuous.
CONCLUSION
The lentiviral-based ER-targeted reporter, LV-pIN-KDEL, offers considerable advantages over present systems for defining the architecture of the ER, especially in primary cells such as neurones that are notoriously difficult to transfect. Images and continuous photobleaching experiments of LV-pIN-KDEL-transduced neurones demonstrate that the endoplasmic reticulum is a dynamic structure with a single continuous lumen. The introduction of LV-pIN-KDEL is anticipated to greatly facilitate a real-time visualisation of the structural plasticity and continuous nature of the neuronal ER in healthy and diseased brain tissue
Modification of neuropathic pain sensation through microglial ATP receptors
Neuropathic pain that typically develops when peripheral nerves are damaged through surgery, bone compression in cancer, diabetes, or infection is a major factor causing impaired quality of life in millions of people worldwide. Recently, there has been a rapidly growing body of evidence indicating that spinal glia play a critical role in the pathogenesis of neuropathic pain. Accumulating findings also indicate that nucleotides play an important role in neuron-glia communication through P2 purinoceptors. Damaged neurons release or leak nucleotides including ATP and UTP to stimulate microglia through P2 purinoceptors expressing on microglia. It was shown in an animal model of neuropathic pain that microglial P2X4 and P2X7 receptors are crucial in pain signaling after peripheral nerve lesion. In this review, we describe the modification of neuropathic pain sensation through microglial P2X4 and P2X7, with the possibility of P2Y6 and P2Y12 involvement
- …