347 research outputs found
Local Axisymmetric Diffusive Stability of Weakly-Magnetized, Differentially-Rotating, Stratified Fluids
We study the local stability of stratified, differentially-rotating fluids to
axisymmetric perturbations in the presence of a weak magnetic field and of
finite resistivity, viscosity and heat conductivity. This is a generalization
of the Goldreich-Schubert-Fricke (GSF) double-diffusive analysis to the
magnetized and resistive, triple-diffusive case. Our fifth-order dispersion
relation admits a novel branch which describes a magnetized version of
multi-diffusive modes. We derive necessary conditions for axisymmetric
stability in the inviscid and perfect-conductor (double-diffusive) limits. In
each case, rotation must be constant on cylinders and angular velocity must not
decrease with distance from the rotation axis for stability, irrespective of
the relative strength of viscous, resistive and heat diffusion. Therefore, in
both double-diffusive limits, solid body rotation marginally satisfies our
stability criteria. The role of weak magnetic fields is essential to reach
these conclusions. The triple-diffusive situation is more complex, and its
stability criteria are not easily stated. Numerical analysis of our general
dispersion relation confirms our analytic double-diffusive criteria, but also
shows that an unstable double-diffusive situation can be significantly
stabilized by the addition of a third, ostensibly weaker, diffusion process. We
describe a numerical application to the Sun's upper radiative zone and
establish that it would be subject to unstable multi-diffusive modes if
moderate or strong radial gradients of angular velocity were present.Comment: 29 pages, 1 table, accepted for publication in Ap
How to observe a non-Kerr spacetime
We present a generic criterion which can be used in gravitational-wave data
analysis to distinguish an extreme-mass-ratio inspiral into a Kerr background
spacetime from one into a non-Kerr background spacetime. The criterion exploits
the fact that when an integrable system, such as the system that describes
geodesic orbits in a Kerr spacetime, is perturbed, the tori in phase space
which initially corresponded to resonances disintegrate so as to form the so
called Birkhoff chains on a surface of section, according to the
Poincar\'{e}-Birkhoff theorem. The KAM curves of these islands in such a chain
share the same ratio of frequencies, even though the frequencies themselves
vary from one KAM curve to another inside an island. On the other hand, the KAM
curves, which do not lie in a Birkhoff chain, do not share this characteristic
property. Such a temporal constancy of the ratio of frequencies during the
evolution of the gravitational-wave signal will signal a non-Kerr spacetime
which could then be further explored.Comment: 4 pages, 2 figure
White dwarfs stripped by massive black holes: sources of coincident gravitational and electromagnetic radiation
White dwarfs inspiraling into black holes of mass \MBH\simgt 10^5M_\odot
are detectable sources of gravitational waves in the LISA band. In many of
these events, the white dwarf begins to lose mass during the main observational
phase of the inspiral. The mass loss starts gently and can last for thousands
of orbits. The white dwarf matter overflows the Roche lobe through the
point at each pericenter passage and the mass loss repeats periodically. The
process occurs very close to the black hole and the released gas can accrete,
creating a bright source of radiation with luminosity close to the Eddington
limit, ~erg~s. This class of inspirals offers a promising
scenario for dual detections of gravitational waves and electromagnetic
radiation.Comment: 5 pages, 3 figures. Minor changes. Accepted in MNRAS Letters on
August 6 201
FUSE Observations of the Dwarf Nova SW UMa During Quiescence
We present spectroscopic observations of the short-period cataclysmic
variable SW Ursa Majoris, obtained by the Far Ultraviolet Spectroscopic
Explorer (FUSE) satellite while the system was in quiescence. The data include
the resonance lines of O VI at 1031.91 and 1037.61 A. These lines are present
in emission, and they exhibit both narrow (~ 150 km/s) and broad (~ 2000 km/s)
components. The narrow O VI emission lines exhibit unusual double-peaked and
redshifted profiles. We attribute the source of this emission to a cooling flow
onto the surface of the white dwarf primary. The broad O VI emission most
likely originates in a thin, photoionized surface layer on the accretion disk.
We searched for emission from H_2 at 1050 and 1100 A, motivated by the
expectation that the bulk of the quiescent accretion disk is in the form of
cool, molecular gas. If H_2 is present, then our limits on the fluxes of the
H_2 lines are consistent with the presence of a surface layer of atomic H that
shields the interior of the disk. These results may indicate that accretion
operates primarily in the surface layers of the disk in SW UMa. We also
investigate the far-UV continuum of SW UMa and place an upper limit of 15,000 K
on the effective temperature of the white dwarf.Comment: 21 Pages, 3 figures, to be published in Ap
Analysis and Control of mortar Quality with ultrasonic wave attenuation
Wave propagation and attenuation on mortar material are discussed in this paper with a Non Destructive Testing (NDT) which can be used to characterize samples of mortars and effect of microstructure of sand in their hardening. Samples were manufactured using same water/cement ration (w/c) 0.65, and cement/sand ration (c/s) 0.5 in order to simulate the attenuation. The characterization of attenuation in mortar material has been performed by ultrasonic reflection technique using a transducer with central frequency 0.5MHz. It is shown that sand particle size exercises significant influence on the evolution of attenuation, the attenuation parameters give information about average state of the hardening of the mortar itself
The Origin of Solar Activity in the Tachocline
Solar active regions, produced by the emergence of tubes of strong magnetic
field in the photosphere, are restricted to within 35 degrees of the solar
equator. The nature of the dynamo processes that create and renew these fields,
and are therefore responsible for solar magnetic phenomena, are not well
understood. We analyze the magneto-rotational stability of the solar tachocline
for general field geometry. This thin region of strong radial and latitudinal
differential rotation, between the radiative and convective zones, is unstable
at latitudes above 37 degrees, yet is stable closer to the equator. We propose
that small-scale magneto-rotational turbulence prevents coherent magnetic
dynamo action in the tachocline except in the vicinity of the equator, thus
explaining the latitudinal restriction of active regions. Tying the magnetic
dynamo to the tachocline elucidates the physical conditions and processes
relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ
On the evolution of the radio pulsar PSR J1734−3333
Recent measurements showed that the period derivative of the ‘hig
h-B’ radio pulsar PSR J1734−3333 is increasing with time. For neutron stars evolving with fallback disks, this rotational behavior is expected in certain phases of the long-term evolution. Using the same model as employed earlier to explain the evolution of anomalous X-ray pulsars and soft gamma-ray repeaters, we show that the period,the first and second period derivatives and the X-ray luminosity of this source can simultaneously acquire the observed values for a neutron star evolving with a fallback disk. We find that the required strength of the dipole field that can produce the source properties is in the range of 10^12 − 10^13 G on the pole of the neutron star. When the model source
reaches the current state properties of PSR J1734−3333, accretion onto the star has not started yet, allowing the source to operate as a regular radio pulsar. Our results imply that PSR J1734−3333 is at an age of ∼3×10^4 −2×10^5years. Such sources will have properties like the X-ray dim isolated neutron stars or transient AXPs at a later epoch of weak accretion from the diminished fallback disk
The Giant X-Ray Flare of NGC 5905: Tidal Disruption of a Star, a Brown Dwarf, or a Planet?
We model the 1990 giant X-ray flare of the quiescent galaxy NGC 5905 as the
tidal disruption of a star by a supermassive black hole. From the observed
rapid decline of the luminosity, over a timescale of a few years, we argue that
the flare was powered by the fallback of debris rather than subsequent
accretion via a thin disk. The fallback model allows constraints to be set on
the black hole mass and the mass of debris. The latter must be very much less
than a solar mass to explain the very low luminosity of the flare. The
observations can be explained either as the partial stripping of the outer
layers of a low-mass main sequence star or as the disruption of a brown dwarf
or a giant planet. We find that the X-ray emission in the flare must have
originated within a small patch rather than over the entire torus of
circularized material surrounding the black hole. We suggest that the patch
corresponds to the ``bright spot'' where the stream of returning debris impacts
the torus. Interestingly, although the peak luminosity of the flare was highly
sub-Eddington, the peak flux from the bright spot was close to the Eddington
limit. We speculate on the implications of this result for observations of
other flare events.Comment: 25 pages, including 5 figure
- …