252 research outputs found

    Potential lethal damage repair in glioblastoma cells irradiated with ion beams of various types and levels of linear energy transfer

    Get PDF
    Glioblastoma (GBM), a Grade IV brain tumour, is a well-known radioresistant cancer. To investigate one of the causes of radioresistance, we studied the capacity for potential lethal damage repair (PLDR) of three altered strains of GBM: T98G, U87 and LN18, irradiated with various ions and various levels of linear energy transfer (LET). The GBM cells were exposed to 12C and 28Si ion beams with LETs of 55, 100 and 200 keV/μm, and with X-ray beams of 1.7 keV/μm. Mono-energetic 12C ions and 28Si ions were generated by the Heavy Ion Medical Accelerator at the National Institute of Radiological Science, Chiba, Japan. Clonogenic assays were used to determine cell inactivation. The ability of the cells to repair potential lethal damage was demonstrated by allowing one identical set of irradiated cells to repair for 24 h before subplating. The results show there is definite PLDR with X-rays, some evidence of PLDR at 55 keV/μm, and minimal PLDR at 100 keV/μm. There is no observable PLDR at 200 keV/μm. This is the first study, to the authors’ knowledge, demonstrating the capability of GBM cells to repair potential lethal damage following charged ion irradiations. It is concluded that a GBM’s PLDR is dependent on LET, dose and GBM strain; and the more radioresistant the cell strain, the greater the PLDR

    Identification of regions in multiple sequence alignments thermodynamically suitable for targeting by consensus oligonucleotides: application to HIV genome

    Get PDF
    BACKGROUND: Computer programs for the generation of multiple sequence alignments such as "Clustal W" allow detection of regions that are most conserved among many sequence variants. However, even for regions that are equally conserved, their potential utility as hybridization targets varies. Mismatches in sequence variants are more disruptive in some duplexes than in others. Additionally, the propensity for self-interactions amongst oligonucleotides targeting conserved regions differs and the structure of target regions themselves can also influence hybridization efficiency. There is a need to develop software that will employ thermodynamic selection criteria for finding optimal hybridization targets in related sequences. RESULTS: A new scheme and new software for optimal detection of oligonucleotide hybridization targets common to families of aligned sequences is suggested and applied to aligned sequence variants of the complete HIV-1 genome. The scheme employs sequential filtering procedures with experimentally determined thermodynamic cut off points: 1) creation of a consensus sequence of RNA or DNA from aligned sequence variants with specification of the lengths of fragments to be used as oligonucleotide targets in the analyses; 2) selection of DNA oligonucleotides that have pairing potential, greater than a defined threshold, with all variants of aligned RNA sequences; 3) elimination of DNA oligonucleotides that have self-pairing potentials for intra- and inter-molecular interactions greater than defined thresholds. This scheme has been applied to the HIV-1 genome with experimentally determined thermodynamic cut off points. Theoretically optimal RNA target regions for consensus oligonucleotides were found. They can be further used for improvement of oligo-probe based HIV detection techniques. CONCLUSIONS: A selection scheme with thermodynamic thresholds and software is presented in this study. The package can be used for any purpose where there is a need to design optimal consensus oligonucleotides capable of interacting efficiently with hybridization targets common to families of aligned RNA or DNA sequences. Our thermodynamic approach can be helpful in designing consensus oligonucleotides with consistently high affinity to target variants in evolutionary related genes or genomes

    3D silicon microdosimetry and RBE study using C-12 ion of different energies

    Get PDF
    This paper presents a new version of the 3D mesa "bridge" microdosimeter comprised of an array of 4248 silicon cells fabricated on 10 µm thick silicon-on-insulator substrate. This microdosimeter has been designed to overcome limitations existing in previous generation silicon microdosimeters and it provides well-defined sensitive volumes and high spatial resolution. The charge collection characteristics of the new 3D mesa microdosimeter were investigated using the ANSTO heavy ion microprobe, utilizing 5.5 MeV He2+ ions. Measurement of microdosimetric quantities allowed for the determination of the Relative Biological Effectiveness of 290 MeV/u and 350 MeV/u 12C heavy ion therapy beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. The microdosimetric RBE obtained showed good agreement with the tissue-equivalent proportional counter. Utilizing the high spatial resolution of the SOI microdosimeter, the LET spectra for 70 MeV 12C+6 ions, like those present at the distal edge of 290 and 350 MeV/u beams, were obtained as the ions passed through thin layers of polyethylene film. This microdosimeter can provide useful information about the lineal energy transfer (LET) spectra downstream of the protective layers used for shielding of electronic devices for single event upset prediction

    Thin Silicon Microdosimeter utilizing 3D MEMS Fabrication Technology: Charge Collection Study and its application in mixed radiation fields

    Get PDF
    New 10-μm-thick silicon microdosimeters utilizing 3-D technology have been developed and investigated in this paper. The TCAD simulations were carried out to understand the electrical properties of the microdosimeters\u27 design. A charge collection study of the devices was performed using 5.5-MeV He2+ ions which were raster scanned over the surface of the detectors and the charge collection median energy maps were obtained and the detection yield was also evaluated. The devices were tested in a 290 MeV/u carbon ion beam at the Heavy Ion Medical Accelerator in Chiba (HIMAC) in Japan. Based on the microdosimetric measurements, the quality factor and dose equivalent out of field were obtained in a mixed radiation field mimicking the radiation environment for spacecraft in deep space

    Recoding of Translation in Turtle Mitochondrial Genomes: Programmed Frameshift Mutations and Evidence of a Modified Genetic Code

    Get PDF
    A +1 frameshift insertion has been documented in the mitochondrial gene nad3 in some birds and reptiles. By sequencing polyadenylated mRNA of the chicken (Gallus gallus), we have shown that the extra nucleotide is transcribed and is present in mature mRNA. Evidence from other animal mitochondrial genomes has led us to hypothesize that certain mitochondrial translation systems have the ability to tolerate frameshift insertions using programmed translational frameshifting. To investigate this, we sequenced the mitochondrial genome of the red-eared slider turtle (Trachemys scripta), where both the widespread nad3 frameshift insertion and a novel site in nad4l were found. Sequencing the region surrounding the insertion in nad3 in a number of other turtles and tortoises reveal general mitochondrial +1 programmed frameshift site features as well as the apparent redefinition of a stop codon in Parker’s snake-neck turtle (Chelodina parkeri), the first known example of this in vertebrate mitochondria

    Fluorescent T7 display phages obtained by translational frameshift

    Get PDF
    Lytic phages form a powerful platform for the display of large cDNA libraries and offer the possibility to screen for interactions with almost any substrate. To visualize these interactions directly by fluorescence microscopy, we constructed fluorescent T7 phages by exploiting the flexibility of phages to incorporate modified versions of its capsid protein. By applying translational frameshift sequences, helper plasmids were constructed that expressed a fixed ratio of both wild-type capsid protein (gp10) and capsid protein fused to enhanced yellow fluorescent protein (EYFP). The frameshift sequences were inserted between the 3′ end of the capsid gene and the sequence encoding EYFP. Fluorescent fusion proteins are only formed when the ribosome makes a −1 shift in reading frame during translation. Using standard fluorescence microscopy, we could sensitively monitor the enrichment of specific binders in a cDNA library displayed on fluorescent T7 phages. The perspectives of fluorescent display phages in the fast emerging field of single molecule detection and sorting technologies are discussed

    Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the safety of focal dose escalation to regions with standardized uptake value (SUV) >2.0 using intensity-modulated radiation therapy (IMRT) by comparison of radiotherapy plans using dose-volume histograms (DVHs) and normal tissue complication probability (NTCP) for postoperative local recurrent rectal cancer</p> <p>Methods</p> <p>First, we performed conventional radiotherapy with 40 Gy/20 fr. (CRT 40 Gy) for 12 patients with postoperative local recurrent rectal cancer, and then we performed FDG-PET/CT radiotherapy planning for those patients. We defined the regions with SUV > 2.0 as biological target volume (BTV) and made three boost plans for each patient: 1) CRT boost plan, 2) IMRT without dose-painting boost plan, and 3) IMRT with dose-painting boost plan. The total boost dose was 20 Gy. In IMRT with dose-painting boost plan, we increased the dose for BTV+5 mm by 30% of the prescribed dose. We added CRT boost plan to CRT 40 Gy (<it>summed plan 1</it>), IMRT without dose-painting boost plan to CRT 40 Gy (<it>summed plan 2</it>) and IMRT with dose-painting boost plan to CRT 40 Gy (<it>summed plan 3</it>), and we compared those plans using DVHs and NTCP.</p> <p>Results</p> <p>D<sub>mean </sub>of PTV-PET and that of PTV-CT were 26.5 Gy and 21.3 Gy, respectively. V<sub>50 </sub>of small bowel PRV in <it>summed plan 1 </it>was significantly higher than those in other plans ((<it>summed plan 1 </it>vs. <it>summed plan 2 </it>vs. <it>summed plan 3</it>: 47.11 ± 45.33 cm<sup>3 </sup>vs. 40.63 ± 39.13 cm<sup>3 </sup>vs. 41.25 ± 39.96 cm<sup>3</sup>(p < 0.01, respectively)). There were no significant differences in V<sub>30</sub>, V<sub>40</sub>, V<sub>60</sub>, D<sub>mean </sub>or NTCP of small bowel PRV.</p> <p>Conclusions</p> <p>FDG-PET-guided IMRT can facilitate focal dose-escalation to regions with SUV above 2.0 for postoperative local recurrent rectal cancer.</p

    Identification and Classification of Conserved RNA Secondary Structures in the Human Genome

    Get PDF
    The discoveries of microRNAs and riboswitches, among others, have shown functional RNAs to be biologically more important and genomically more prevalent than previously anticipated. We have developed a general comparative genomics method based on phylogenetic stochastic context-free grammars for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set of 48,479 candidate RNA structures. This screen finds a large number of known functional RNAs, including 195 miRNAs, 62 histone 3′UTR stem loops, and various types of known genetic recoding elements. Among the highest-scoring new predictions are 169 new miRNA candidates, as well as new candidate selenocysteine insertion sites, RNA editing hairpins, RNAs involved in transcript auto regulation, and many folds that form singletons or small functional RNA families of completely unknown function. While the rate of false positives in the overall set is difficult to estimate and is likely to be substantial, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization
    corecore