196 research outputs found

    Avoiding Dangerous Missense: Thermophiles Display Especially Low Mutation Rates

    Get PDF
    Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003–0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 104-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate

    Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent

    Get PDF
    Commensal bacteria often have an especially rich source of glycan-degrading enzymes which allow them to utilize undigested carbohydrates from the food or the host. The species Ruminococcus gnavus is present in the digestive tract of ≥90% of humans and has been implicated in gut-related diseases such as inflammatory bowel diseases (IBD). Here we analysed the ability of two R. gnavus human strains, E1 and ATCC 29149, to utilize host glycans. We showed that although both strains could assimilate mucin monosaccharides, only R. gnavus ATCC 29149 was able to grow on mucin as a sole carbon source. Comparative genomic analysis of the two R. gnavus strains highlighted potential clusters and glycoside hydrolases (GHs) responsible for the breakdown and utilization of mucin-derived glycans. Transcriptomic and functional activity assays confirmed the importance of specific GH33 sialidase, and GH29 and GH95 fucosidases in the mucin utilisation pathway. Notably, we uncovered a novel pathway by which R. gnavus ATCC 29149 utilises sialic acid from sialylated substrates. Our results also demonstrated the ability of R. gnavus ATCC 29149 to produce propanol and propionate as the end products of metabolism when grown on mucin and fucosylated glycans. These new findings provide molecular insights into the strain-specificity of R. gnavus adaptation to the gut environment advancing our understanding of the role of gut commensals in health and disease

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    The fecal metabolome as a functional readout of the gut microbiome

    Get PDF
    The human gut microbiome plays a key role in human health1, but 16S characterization lacks quantitative functional annotation2. The fecal metabolome provides a functional readout of microbial activity and can be used as an intermediate phenotype mediating host–microbiome interactions3. In this comprehensive description of the fecal metabolome, examining 1,116 metabolites from 786 individuals from a population-based twin study (TwinsUK), the fecal metabolome was found to be only modestly influenced by host genetics (heritability (H2) = 17.9%). One replicated locus at the NAT2 gene was associated with fecal metabolic traits. The fecal metabolome largely reflects gut microbial composition, explaining on average 67.7% (±18.8%) of its variance. It is strongly associated with visceral-fat mass, thereby illustrating potential mechanisms underlying the well-established microbial influence on abdominal obesity. Fecal metabolic profiling thus is a novel tool to explore links among microbiome composition, host phenotypes, and heritable complex traits

    From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways

    Get PDF
    The human body hosts an enormous abundance and diversity of microbes, which perform a range of essential and beneficial functions. Our appreciation of the importance of these microbial communities to many aspects of human physiology has grown dramatically in recent years. We know, for example, that animals raised in a germ-free environment exhibit substantially altered immune and metabolic function, while the disruption of commensal microbiota in humans is associated with the development of a growing number of diseases. Evidence is now emerging that, through interactions with the gut-brain axis, the bidirectional communication system between the central nervous system and the gastrointestinal tract, the gut microbiome can also influence neural development, cognition and behaviour, with recent evidence that changes in behaviour alter gut microbiota composition, while modifications of the microbiome can induce depressive-like behaviours. Although an association between enteropathy and certain psychiatric conditions has long been recognized, it now appears that gut microbes represent direct mediators of psychopathology. Here, we examine roles of gut microbiome in shaping brain development and neurological function, and the mechanisms by which it can contribute to mental illness. Further, we discuss how the insight provided by this new and exciting field of research can inform care and provide a basis for the design of novel, microbiota-targeted, therapies.GB Rogers, DJ Keating, RL Young, M-L Wong, J Licinio, and S Wesseling
    corecore