2,188 research outputs found

    Non-Unitary and Unitary Transitions in Generalized Quantum Mechanics, New Small Parameter and Information Problem Solving

    Get PDF
    Quantum Mechanics of the Early Universe is considered as deformation of a well-known Quantum Mechanics. Similar to previous works of the author, the principal approach is based on deformation of the density matrix with concurrent development of the wave function deformation in the respective Schr{\"o}dinger picture, the associated deformation parameter being interpreted as a new small parameter. It is demonstrated that the existence of black holes in the suggested approach in the end twice causes nonunitary transitions resulting in the unitarity. In parallel this problem is considered in other terms: entropy density, Heisenberg algebra deformation terms, respective deformations of Statistical Mechanics, - all showing the identity of the basic results. From this an explicit solution for Hawking's informaion paradox has been derived.Comment: 18 page

    Instabilities of noncommutative two dimensional BF model

    Full text link
    The noncommutative extension of two dimensional BF model is considered. It is shown that the realization of the noncommutative map via the Groenewold-Moyal star product leads to instabilities of the action, hence to a non renormalizable theory.Comment: 9 page

    On Consistency Of Noncommutative Chern-Simons Theory

    Full text link
    We consider the noncommutative extension of Chern-Simons theory. We show the the theory can be fully expanded in power series of the noncommutative parameter theta and that no non-analytical sector exists. The theory appears to be unstable under radiative corrections, but we show that the infinite set of instabilities, to all orders in \hbar and in theta, is confined to a BRS exact cocycle. We show also that the theory is anomaly free. The quantum theory cannot be written in terms of the Groenewald-Moyal star product, and hence doubts arise on the interpretation of the noncommutative nature of the underlying spacetime. Nonetheless, the deformed theory is well defined as a quantum field theory, and the beta function of the Chern-Simons coupling constant vanishes, as in the ordinary Chern-Simons theory.Comment: 17 page

    Symmetry breaking aspects of the effective Lagrangian for quantum black holes

    Get PDF
    The physical excitations entering the effective Lagrangian for quantum black holes are related to a Goldstone boson which is present in the Rindler limit and is due to the spontaneous breaking of the translation symmetry of the underlying Minkowski space. This physical interpretation, which closely parallels similar well-known results for the effective stringlike description of flux tubes in QCD, gives a physical insight into the problem of describing the quantum degrees of freedom of black holes. It also suggests that the recently suggested concept of 'black hole complementarity' emerges at the effective Lagrangian level rather than at the fundamental level.Comment: 11 pages, Latex,1 figur

    Wave Packets Propagation in Quantum Gravity

    Full text link
    Wave packet broadening in usual quantum mechanics is a consequence of dispersion behavior of the medium which the wave propagates in it. In this paper, we consider the problem of wave packet broadening in the framework of Generalized Uncertainty Principle(GUP) of quantum gravity. New dispersion relations are derived in the context of GUP and it has been shown that there exists a gravitational induced dispersion which leads to more broadening of the wave packets. As a result of these dispersion relations, a generalized Klein-Gordon equation is obtained and its interpretation is given.Comment: 9 pages, no figur

    A Multi Megawatt Cyclotron Complex to Search for CP Violation in the Neutrino Sector

    Full text link
    A Multi Megawatt Cyclotron complex able to accelerate H2+ to 800 MeV/amu is under study. It consists of an injector cyclotron able to accelerate the injected beam up to 50 MeV/n and of a booster ring made of 8 magnetic sectors and 8 RF cavities. The magnetic field and the forces on the superconducting coils are evaluated using the 3-D code OPERA. The injection and extraction trajectories are evaluated using the well tested codes developed by the MSU group in the '80s. The advantages to accelerate H2+ are described and preliminary evaluations on the feasibility and expected problems to build the injector cyclotron and the ring booster are here presented.Comment: Presentation at Cyclotron'10 conference, Lanzhou, China, Sept 7, 201

    Gravitational Wave Bursts from Cosmic Superstrings with Y-junctions

    Full text link
    Cosmic superstring loops generically contain strings of different tensions that meet at Y-junctions. These loops evolve non-periodically in time, and have cusps and kinks that interact with the junctions. We study the effect of junctions on the gravitational wave signal emanating from cosmic string cusps and kinks. We find that earlier results on the strength of individual bursts from cusps and kinks on strings without junctions remain largely unchanged, but junctions give rise to additional contributions to the gravitational wave signal coming from strings expanding at the speed of light at a junction and kinks passing through a junction.Comment: 20 pages, 5 figure

    Geophysical constraint on a relic background of the dilatons

    Full text link
    According to a scenario in string cosmology, a relic background of light dilatons can be a significant component of the dark matter in the Universe. A new approach of searching for such a dilatonic background by observing Earth's surface gravity was proposed in my previous work. In this paper, the concept of the geophysical search is briefly reviewed, and the geophysical constraint on the dilaton background is presented as a function of the strength of the dilaton coupling, qb2q_b^2. For simplicity, I focus on massless dilatons and assume a simple Earth model. With the current upper limit on qb2q_b^2, we obtain the upper limit on the dimensionless energy density of the massless background, ΩDWh10026×107\Omega_{DW}h^2_{100} \leq 6 \times 10^{-7}, which is about one-order of magnitude more stringent than the one from astrophysical observations, at the frequency of \sim 7 ×\times 105^{-5} Hz. If the magnitude of qb2q_b^2 is experimentally found to be smaller than the current upper limit by one order of magnitude, the geophysical upper limit on ΩDWh1002\Omega_{DW}h^2_{100} becomes less stringent and comparable to the one obtained from the astrophysical observations.Comment: 6 pages, Proceedings for the 8th Edoardo Amaldi Conference on Gravitational Waves, 21-26 June, 2009, Columbia University, New York, US

    Pure States, Mixed States and Hawking Problem in Generalized Quantum Mechanics

    Get PDF
    This paper is the continuation of a study into the information paradox problem started by the author in his earlier works. As previously, the key instrument is a deformed density matrix in quantum mechanics of the early universe. It is assumed that the latter represents quantum mechanics with fundamental length. It is demonstrated that the obtained results agree well with the canonical viewpoint that in the processes involving black holes pure states go to the mixed ones in the assumption that all measurements are performed by the observer in a well-known quantum mechanics. Also it is shown that high entropy for Planck remnants of black holes appearing in the assumption of the Generalized Uncertainty Relations may be explained within the scope of the density matrix entropy introduced by the author previously. It is noted that the suggested paradigm is consistent with the Holographic Principle. Because of this, a conjecture is made about the possibility for obtaining the Generalized Uncertainty Relations from the covariant entropy bound at high energies in the same way as R. Bousso has derived Heisenberg uncertainty principle for the flat space.Comment: 12 pages,no figures,some corrections,new reference
    corecore