351 research outputs found

    A 3-D Track-Finding Processor for the CMS Level-1 Muon Trigger

    Full text link
    We report on the design and test results of a prototype processor for the CMS Level-1 trigger that performs 3-D track reconstruction and measurement from data recorded by the cathode strip chambers of the endcap muon system. The tracking algorithms are written in C++ using a class library we developed that facilitates automatic conversion to Verilog. The code is synthesized into firmware for field-programmable gate-arrays from the Xilinx Virtex-II series. A second-generation prototype has been developed and is currently under test. It performs regional track-finding in a 60 degree azimuthal sector and accepts 3 GB/s of input data synchronously with the 40 MHz beam crossing frequency. The latency of the track-finding algorithms is expected to be 250 ns, including geometrical alignment correction of incoming track segments and a final momentum assignment based on the muon trajectory in the non-uniform magnetic field in the CMS endcaps.Comment: 7 pages, 5 figures, proceedings for the conference on Computing in High Energy and Nuclear Physics, March 24-28 2003, La Jolla, Californi

    The Track-Finding Processor for the Level-1 Trigger of the CMS Endcap Muon System

    Get PDF
    We report on the development and test of a prototype track-finding processor for the level-1 trigger of the CMS endcap muon system. The processor links track segments identified in the cathode strip chambers of the endcap muon system into complete three-dimensional tracks, and measures the transverse momentum of the best track candidates from the sagitta induced by the magnetic bending. The algorithms are implemented using SRAM and Xilinx Virtex FPGAs, and the measured latency is 15 clocks. We also report on the design of the pre-production prototype, which achieves further latency and size reduction using state-of-the-art technology. (4 refs)

    Commissioning of the CSC Level 1 Trigger Optical Links at CMS

    Get PDF
    The Endcap Muon (EMU) Cathode Strip Chamber (CSC) detector at the CMS experiment at CERN has been fully installed and operational since summer of 2008. The system of 180 optical links connects the middle and upper levels of the CSC Level 1 Trigger chain. Design and commissioning of all optical links present several challenges, including reliable clock distribution, link synchronization and alignment, status monitoring and system testing. We gained an extensive experience conducting various tests, participating in local and global cosmic runs and in initial stage of the LHC operation. In this paper we present our hardware, firmware and software solutions and first results of the optical link commissioning

    Design Considerations for an Upgraded Track-Finding Processor in the Level-1 Endcap Muon Trigger of CMS for SLHC operations

    Get PDF
    The conceptual design for a Level-1 muon track-finder trigger for the CMS endcap muon system is proposed that can accommodate the increased particle occupancy and system constraints of the proposed SLHC accelerator upgrade and the CMS detector upgrades. A brief review of the architecture of the current track-finder for LHC trigger operation is given, with potential bottlenecks indicated for SLHC operation. The upgraded track-finding processors described here would receive as many as two track segments detected from every cathode strip chamber comprising the endcap muon system, up to a total of 18 per 60° azimuthal sector. This would dramatically improve the efficiency of the track reconstruction in a high occupancy environment over the current design. However, such an improvement would require significantly higher bandwidth and logic resources. We propose to use the fastest available serial links, running asynchronously to the machine clock to use their full bandwidth. The work of creating a firmware model for the upgraded Sector Processor is in progress; details of its implementation will be discussed. Another enhancement critical for the overall Level-1 trigger capability for physics studies in phase 2 of the SLHC is to include the inner silicon tracking systems into the design of the Level-1 trigger

    The CMS Modular Track Finder boards, MTF6 and MTF7

    Get PDF
    To accommodate the increase in energy and luminosity of the upgraded LHC, the CMS Endcap Muon Level 1 Trigger system has to be significantly modified. To provide the best track reconstruction, the Trigger system must now import all available trigger primitives generated by Cathode Strip Chambers and by other regional subsystems, such as Resistive Plate Chambers. In addition to massive input bandwidth, this also requires a significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit for muon track finding is being designed. This unit follows the micro-TCA standard recently adopted by CMS. It consists of three modules. The Core Logic module houses the large FPGA that contains the processing logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Look-Up Table module contains a large amount of low-latency memory that is used to assign the final transverse momentum of the muon candidate tracks. The name of the unit — Modular Track Finder — reflects the modular approach used in the design. Presented here are the details of the hardware design of the prototype unit based on Xilinx's Virtex-6 FPGA family, MTF6, as well as results of the conducted tests. Also presented are plans for the pre-production prototype based on the Virtex-7 FPGA family, MTF7

    Epigenetic inhibitors eliminate senescent melanoma BRAFV600E cells that survive long-term BRAF inhibition

    Get PDF
    It is estimated that ~50% of patients with melanoma harbour B-Raf (BRAF)V600 driver mutations, with the most common of these being BRAFV600E, which leads to the activation of mitogen-activated protein kinase proliferative and survival pathways. BRAF inhibitors are used extensively to treat BRAF-mutated metastatic melanoma; however, acquired resistance occurs in the majority of patients. The effects of long-term treatment with PLX4032 (BRAFV600 inhibitor) were studied in vitro on sensitive V600E BRAF-mutated melanoma cell lines. After several weeks of treatment with PLX4032, the majority of the melanoma cells died; however, a proportion of cells remained viable and quiescent, presenting senescent cancer stem cell-like characteristics. This surviving population was termed SUR cells, as discontinuing treatment allowed the population to regrow while retaining equal drug sensitivity to that of parental cells. RNA sequencing analysis revealed that SUR cells exhibit changes in the expression of 1,415 genes (P<0.05) compared with parental cells. Changes in the expression levels of a number of epigenetic regulators were also observed. These changes and the reversible nature of the senescence state were consistent with epigenetic regulation; thus, it was investigated as to whether the senescent state could be reversed by epigenetic inhibitors. It was found that both parental and SUR cells were sensitive to different histone deacetylase (HDAC) inhibitors, such as SAHA and MGCD0103, and to the cyclin-dependent kinase (CDK)9 inhibitor, CDKI-73, which induced apoptosis and reduced proliferation both in the parental and SUR populations. The results suggested that the combination of PLX4032 with HDAC and CDK9 inhibitors may achieve complete elimination of SUR cells that persist after BRAF inhibitor treatment, and reduce the development of resistance to BRAF inhibitors.Fil: Madorsky Rowdo, Florencia Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Baron, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Gallagher, Stuart John. Centenary Institute; AustraliaFil: Hersey, Peter. Centenary Institute; AustraliaFil: Emran, Abdullah A. L.. Centenary Institute; AustraliaFil: Von Euw, Erika María. University of California at Los Angeles; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barrio, Maria Marcela. Fundación Cáncer. Centro de Investigaciones Oncológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mordoh, Jose. Fundación Cáncer. Centro de Investigaciones Oncológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848

    Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment

    Get PDF
    The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
    corecore