1,246 research outputs found

    New symmetry current for massive spin-3/2 fields

    Full text link
    We present several new results which will be of value to theorists working with massive spin-3/2 vector-spinor fields as found, for example, in low and intermediate energy hadron physics and also linearized supergravity. The general lagrangian and propagator for a vector-spinor field in d-dimensions is given. It is shown that the observables of the theory are invariant under a novel continuous symmetry group which is also extended to an algebra. A new technique is developed for exploring the consequences of the symmetry and a previously unknown conserved vector current and charge are found. The current leads to new interactions involving spin-3/2 particles and may have important experimental consequences.Comment: 9 pages, references updated and minor change

    Dissociation of the benzene molecule by UV and soft X-rays in circumstellar environment

    Full text link
    Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by UV and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time of flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum ultraviolet (21.21 eV) and soft X-ray (282-310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50% of the ionized benzene molecules survive to UV dissociation while only about 4% resist to X-rays. Partial ion yields of H+ and small hydrocarbons such as C2H2+, C3H3+ and C4H2+ are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 were obtained.Comment: The paper contains 8 pages, 9 figures and 4 tables. Accepted to be published on MNRAS on 2008 November 2

    Systematic reduction of complex tropospheric chemical mechanisms using sensitivity and time-scale analyses

    No full text
    International audienceExplicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of local concentration sensitivity analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme

    Systematic reduction of complex tropospheric chemical mechanisms, Part II: Lumping using a time-scale based approach

    Get PDF
    This paper presents a formal method of species lumping that can be applied automatically to intermediate compounds within detailed and complex tropospheric chemical reaction schemes. The method is based on grouping species with reference to their chemical lifetimes and reactivity structures. A method for determining the forward and reverse transformations between individual and lumped compounds is developed. Preliminary application to the Leeds Master Chemical Mechanism (MCMv2.0) has led to the removal of 734 species and 1777 reactions from the scheme, with minimal degradation of accuracy across a wide range of test trajectories relevant to polluted tropospheric conditions. The lumped groups are seen to relate to groups of peroxy acyl nitrates, nitrates, carbonates, oxepins, substituted phenols, oxeacids and peracids with similar lifetimes and reaction rates with OH. In combination with other reduction techniques, such as sensitivity analysis and the application of the quasi-steady state approximation (QSSA), a reduced mechanism has been developed that contains 35% of the number of species and 40% of the number of reactions compared to the full mechanism. This has led to a speed up of a factor of 8 in terms of computer calculation time within box model simulations

    Systematic reduction of complex tropospheric chemical mechanisms, Part I: sensitivity and time-scale analyses

    Get PDF
    International audienceExplicit mechanisms describing the complex degradation pathways of atmospheric volatile organic compounds (VOCs) are important, since they allow the study of the contribution of individual VOCS to secondary pollutant formation. They are computationally expensive to solve however, since they contain large numbers of species and a wide range of time-scales causing stiffness in the resulting equation systems. This paper and the following companion paper describe the application of systematic and automated methods for reducing such complex mechanisms, whilst maintaining the accuracy of the model with respect to important species and features. The methods are demonstrated via application to version 2 of the Leeds Master Chemical Mechanism. The methods of Jacobian analysis and overall rate sensitivity analysis proved to be efficient and capable of removing the majority of redundant reactions and species in the scheme across a wide range of conditions relevant to the polluted troposphere. The application of principal component analysis of the rate sensitivity matrix was computationally expensive due to its use of the decomposition of very large matrices, and did not produce significant reduction over and above the other sensitivity methods. The use of the quasi-steady state approximation (QSSA) proved to be an extremely successful method of removing the fast time-scales within the system, as demonstrated by a local perturbation analysis at each stage of reduction. QSSA species were automatically selected via the calculation of instantaneous QSSA errors based on user-selected tolerances. The application of the QSSA led to the removal of a large number of alkoxy radicals and excited Criegee bi-radicals via reaction lumping. The resulting reduced mechanism was shown to reproduce the concentration profiles of the important species selected from the full mechanism over a wide range of conditions, including those outside of which the reduced mechanism was generated. As a result of a reduction in the number of species in the scheme of a factor of 2, and a reduction in stiffness, the computational time required for simulations was reduced by a factor of 4 when compared to the full scheme

    Systematic lumping of complex tropospheric chemical mechanisms using a time-scale based approach

    No full text
    International audienceThis paper presents a formal method of species lumping that can be applied automatically to intermediate compounds within detailed and complex tropospheric chemical reaction schemes. The method is based on grouping species with reference to their chemical lifetimes and reactivity structures. A method for determining the forward and reverse transformations between individual and lumped compounds is developed. Preliminary application to the Leeds Master Chemical Mechanism (MCMv2.0) has led to the removal of 734 species and 1777 reactions from the scheme, with minimal degradation of accuracy across a wide range of test trajectories relevant to polluted tropospheric conditions. The lumped groups are seen to relate to groups of peroxy acyl nitrates, nitrates, carbonates, oxepins, substituted phenols, oxeacids and peracids with similar lifetimes and reaction rates with OH. In combination with other reduction techniques, such as sensitivity analysis and the application of the quasi-steady state approximation (QSSA), a reduced mechanism has been developed that contains 35% of the number of species and 40% of the number of reactions compared to the full mechanism. This has led to a speed up of a factor of 8 in terms of computer calculation time within box model simulations

    Object substitution masking and the object updating hypothesis

    Get PDF
    The object updating hypothesis of object substitution masking proposes that the phenomenon arises when the visual system fails to individuate target and mask at the level of object token representations. This hypothesis is tested in two experiments using modifications of the dot mask paradigm developed by Lleras and Moore (2003). Target—mask individuation is manipulated by the presentation of additional display items that influence the linking apparent motion seen between a target and a spatially separated mask (Experiment 1), and by the use of placeholders that maintain the target object’s presence during mask presentation (Experiment 2). Results in both cases are consistent with the updating hypothesis in showing significantly reduced masking when the conditions promoted target—mask individuation. However, in both experiments, some masking was still present under conditions of individuation, an effect we attribute to attentional capture by the mask
    corecore