1,264 research outputs found

    Secular models and Kozai resonance for planets in coorbital non-coplanar motion

    Get PDF
    In this work, we construct and test an analytical and a semianalytical secular models for two planets locked in a coorbital non-coplanar motion, comparing some results with the case of restricted three body problem. The analytical average model replicates the numerical N-body integrations, even for moderate eccentricities (\lesssim 0.3) and inclinations (10\lesssim10^\circ), except for the regions corresponding to quasi-satellite and Lidov-Kozai configurations. Furthermore, this model is also useful in the restricted three body problem, assuming very low mass ratio between the planets. We also describe a four-degree-of-freedom semianalytical model valid for any type of coorbital configuration in a wide range of eccentricities and inclinations. {Using a N-body integrator, we have found that the phase space of the General Three Body Problem is different to the restricted case for inclined systems, and establish the location of the Lidov-Kozai equilibrium configurations depending on mass ratio. We study the stability of periodic orbits in the inclined systems, and find that apart from the robust configurations L4L_4, AL4AL_4, and QSQS is possible to harbour two Earth-like planets in orbits previously identified as unstable UU and also in Euler L3L_3 configurations, with bounded chaos.Comment: 15 pages. 20 figure

    MAMA: An Algebraic Map for the Secular Dynamics of Planetesimals in Tight Binary Systems

    Get PDF
    We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system (TBS). The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disk. The gas disk is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 100 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply MAMA to the \gamma-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary disks, we find that a low-eccentricity static disk aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other scenarios appear hostile to planetary formation

    Algebra of chiral currents on the physical surface

    Get PDF
    Using a particular structure for the Lagrangian action in a one-dimensional Thirring model and performing the Dirac's procedure, we are able to obtain the algebra for chiral currents which is entirely defied on the constraint surface in the corresponding hamiltonian description of the theory.Comment: 10 page

    Tidal evolution of circumbinary systems with arbitrary eccentricities: Applications for Kepler systems

    Get PDF
    We present an extended version of the Constant Time Lag analytical approach for the tidal evolution of circumbinary planets introduced in our previous work. The model is self-consistent, in the sense that all tidal interactions between pairs are computed, regardless of their size. We derive analytical expressions for the variational equations governing the spin and orbital evolution, which are expressed as high-order elliptical expansions in the semimajor axis ratio but retain closed form in terms of the binary and planetary eccentricities. These are found to reproduce the results of the numerical simulations with arbitrary eccentricities very well, as well as reducing to our previous results in the low-eccentric case. Our model is then applied to the well-characterised Kepler circumbinary systems by analysing the tidal timescales and unveiling the tidal flow around each different system. In all cases we find that the spins reach stationary values much faster than the characteristic timescale of the orbital evolution, indicating that all Kepler circumbinary planets are expected to be in a sub-synchronous state. On the other hand, all systems are located in a tidal flow leading to outward migration; thus the proximity of the planets to the orbital instability limit may have been even greater in the past. Additionally, Kepler systems may have suffered a significant tidally induced eccentricity damping, which may be related to their proximity to the capture eccentricity. To help understand the predictions of our model, we also offer a simple geometrical interpretation of our results.Fil: Zoppetti, Federico Andrés. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Leiva, A. M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Beauge, Cristian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentin

    Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGF beta availability

    Get PDF
    The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGF beta by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment

    An overview of forecast analysis with ARIMA Models during the COVID-19 Pandemic: methodology and case study in Brazil

    Get PDF
    This comprehensive overview focuses on the issues presented by the pandemic due to COVID-19, understanding its spread and the wide-ranging effects of government-imposed restric tions. The overview examines the utility of autoregressive integrated moving average (ARIMA) models, which are often overlooked in pandemic forecasting due to perceived limitations in han dling complex and dynamic scenarios. Our work applies ARIMA models to a case study using data from Recife, the capital of Pernambuco, Brazil, collected between March and September 2020. The research provides insights into the implications and adaptability of predictive methods in the context of a global pandemic. The findings highlight the ARIMA models’ strength in generating accurate short-term forecasts, crucial for an immediate response to slow down the disease’s rapid spread. Accurate and timely predictions serve as the basis for evidence-based public health strategies and interventions, greatly assisting in pandemic management. Our model selection involves an automated process optimizing parameters by using autocorrelation and partial autocorrelation plots, as well as various precise measures. The performance of the chosen ARIMA model is confirmed when comparing its forecasts with real data reported after the forecast period. The study successfully forecasts both confirmed and recovered COVID-19 cases across the preventive plan phases in Recife. However, limitations in the model’s performance are observed as forecasts extend into the future. By the end of the study period, the model’s error substantially increased, and it failed to detect the stabilization and deceleration of cases. The research highlights challenges associated with COVID-19 data in Brazil, such as under-reporting and data recording delays. Despite these limitations, the study emphasizes the potential of ARIMA models for short-term pandemic forecasting while emphasizing the need for further research to enhance long-term predictions.This research was partially supported by the National Council for Scientific and Technological Development (CNPq) through the grant 303192/2022-4 (R.O.), and Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES), from the Brazilian government; by FONDECYT, grant number 1200525 (V.L.), from the National Agency for Research and Development (ANID) of the Chilean government under the Ministry of Science and Technology, Knowledge, and Innovation; and by Portuguese funds through the CMAT—Research Centre of Mathematics of University of Minho—within projects UIDB/00013/2020 and UIDP/00013/2020 (C.C.)

    Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGF beta availability

    Get PDF
    The life-long maintenance of haematopoietic stem and progenitor cells (HSPCs) critically relies on environmental signals produced by cells that constitute the haematopoietic niche. Here we report a cell-intrinsic mechanism whereby haematopoietic cells limit proliferation within the bone marrow, and show that this pathway is repressed by E-selectin ligand 1 (ESL-1). Mice deficient in ESL-1 display aberrant HSPC quiescence, expansion of the immature pool and reduction in niche size. Remarkably, the traits were transplantable and dominant when mutant and wild-type precursors coexisted in the same environment, but were independent of E-selectin, the vascular receptor for ESL-1. Instead, quiescence is generated by unrestrained production of the cytokine TGF beta by mutant HSPC, and in vivo or in vitro blockade of the cytokine completely restores the homeostatic properties of the haematopoietic niche. These findings reveal that haematopoietic cells, including the more primitive compartment, can actively shape their own environment
    corecore