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Abstract: This comprehensive overview focuses on the issues presented by the pandemic due to
COVID-19, understanding its spread and the wide-ranging effects of government-imposed restric-
tions. The overview examines the utility of autoregressive integrated moving average (ARIMA)
models, which are often overlooked in pandemic forecasting due to perceived limitations in han-
dling complex and dynamic scenarios. Our work applies ARIMA models to a case study using
data from Recife, the capital of Pernambuco, Brazil, collected between March and September 2020.
The research provides insights into the implications and adaptability of predictive methods in the
context of a global pandemic. The findings highlight the ARIMA models’ strength in generating
accurate short-term forecasts, crucial for an immediate response to slow down the disease’s rapid
spread. Accurate and timely predictions serve as the basis for evidence-based public health strategies
and interventions, greatly assisting in pandemic management. Our model selection involves an
automated process optimizing parameters by using autocorrelation and partial autocorrelation plots,
as well as various precise measures. The performance of the chosen ARIMA model is confirmed
when comparing its forecasts with real data reported after the forecast period. The study successfully
forecasts both confirmed and recovered COVID-19 cases across the preventive plan phases in Recife.
However, limitations in the model’s performance are observed as forecasts extend into the future.
By the end of the study period, the model’s error substantially increased, and it failed to detect the
stabilization and deceleration of cases. The research highlights challenges associated with COVID-19
data in Brazil, such as under-reporting and data recording delays. Despite these limitations, the study
emphasizes the potential of ARIMA models for short-term pandemic forecasting while emphasizing
the need for further research to enhance long-term predictions.

Keywords: ARIMA forecasting; epidemiological forecasting; pandemic analytics; predictive modeling;
public health intelligence

MSC: 62M10

1. Introduction

The emergence of the Sars-CoV-2 coronavirus at the end of 2019 marked the onset of a
global pandemic that has since infected over 560 million people and resulted in over six
million fatalities, according to data from the Worldometers platform [1]. Being detected
for the first time in the Chinese city of Wuhan, the virus quickly spread across the globe,
leading to the World Health Organization to officially declare a pandemic on 11 March
2020. In response to this formidable challenge, the scientific community has mobilized to
understand and combat the disease, known as COVID-19 [2,3].
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The research efforts have been diverse, ranging from the pursuit of effective treatments
and vaccines to mathematical and statistical modeling aimed at forecasting potential
infection trends [4–6]. One of the early contributions in this field is attributed to the study
presented in [7], which gained international prominence for its insights.

Many researchers have drawn on the famous SIR—susceptible, infectious, recovered—
model to construct deterministic structures based on differential equations [8,9]. In [10], a
generalized SEIR—susceptible, exposed, infectious, recovered—model incorporating self-
protection and quarantine compartments was proposed. In [11], an adjusted SEIR model
that includes a quarantined population was indicated, and in [12], a further generalized
version of this model for an age-structured population was presented. In [13], the ongoing
trajectory of the outbreak was simulated using an age-structured SEIR model, while in [14]
a SEIR model was stated to parameterize the intervention effects of the control measures.
An optimal control theory [15] was applied to these epidemic models to derive optimal
strategies for easing restrictive measures, as showcased in [16].

Nonpharmacological measures to combat COVID-19 have also been modeled in [17,18].
The same was carried out in [19] using branching processes. Other research [20,21] focused
on the parametric modeling of growth curves, such as the use of the beta logistic model
to analyze mortality curves and second waves of the pandemic. Similarly, in [22], the
generalized Richards and growth models were used to analyze the COVID-19-infected cases
in China. In [23], a cluster analysis of COVID-19 mortality according to sociodemographic
factors at municipal level in Mexico was performed.

As it is well known, a crucial aspect of pandemic modeling is the ability to forecast
the trajectory of infection and death rates. Several studies applied machine learning (ML)
techniques to this end [24–26], while others [27–29] utilized deep learning and time series
analysis. In [29], a combination of autoregressive integrated moving average (ARIMA)
models with an association rule of mining techniques was proposed. This combination
of models and techniques was designed to identify prognostic factors and to enable the
efficient prediction of COVID-19 case numbers, thereby enhancing crisis management
capabilities during the pandemic.

Artificial intelligence and deep learning techniques have found numerous applications
across diverse domains over the years, including healthcare, manufacturing, environmental
monitoring, and reliability engineering [30–32]. These techniques have also been employed
for COVID-19-related tasks, such as predicting the course of the disease and enhancing di-
agnostic accuracy from medical imaging [33]. Another study proposed a forecasting model
for COVID-19 using long short-term memory networks, a specific type of deep learning
model [34]. As pointed out in [35], there is a growing recognition of the potential for the
combination of artificial intelligence methods and mathematical techniques to reach precise
and reliable approaches [36]. Mathematically-based models such as the modified SEIR and
long short-term memory structures were considered in [37,38]. Moreover, in [39], a fusion
of ML and mathematical models was assessed to enhance the precision and robustness of
near-future COVID-19 pandemic predictions. This fusion involved integrating random
forest, gradient boosting, k-nearest neighbors, and kernel ridge regression ML models
with Bertalanffy, Gompertz, logistic, and Richards models. The analysis of such mod-
els utilized daily case data, vaccination rates, mobility statistics, and weather conditions
to generate the forecasts. This innovative fusion of mathematical and ML models high-
lights the aim to leverage the strengths of diverse modeling techniques for more effective
pandemic prediction.

Within the realm of time series data, ARIMA models have been widely studied and
applied in epidemic disease prediction [40–44]. However, in [45], it was argued that these
models must be suitable for dealing with complex and dynamic problems. Interestingly,
despite often being overlooked in pandemic forecasting due to perceived incompatibility
with complex and dynamic contexts, ARIMA models can yield promising results. The
exploration of the accuracy of ARIMA model predictions compared to real data in Kuwait,
as carried out in [46], exemplifies these promising results.
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Recently, in [47], ML models were applied to COVID-19 data to forecast the impact
of SARS-CoV-2 in South Asian Association for Regional Cooperation (SAARC) countries
and globally; see [48] for the case of South American countries. The authors evaluated
and compared various forecasting models, including ARIMA, GLMNet, random forest,
and extreme gradient boosting (XGBoost), using selection criteria. These criteria employed
performance metrics to pinpoint the most suitable and effective models. Their findings
underscored the ARIMA model’s superiority in accurately predicting confirmed COVID-19
cases in five out of the eight SAARC countries. Specifically, the model outperformed
others in predicting cases in some of these countries [47]. In [49], the application of a
hybrid forecasting model was investigated, combining both ARIMA and neural network
models to predict daily COVID-19 cases, while in [50] a hybrid ARIMA-WBF, a wavelet-
based forecasting model with a similar objective, was proposed. Concerning hybrid
models, in [51], a multi-layer perceptron neural network was combined with ARIMA
methodologies for the outbreak prediction. The COVID-19 pandemic has accelerated the
study, development, and application of various disease prediction methods, often presented
and used in combination, as seen in hybrid models, with the aim of achieving more accurate
results. Among the various methods, ARIMA models still stand as a promising approach
in this context, often demonstrating competitive performance compared to other models.

Drawing on insights from previous research, we conduct here a case study focused
on the first wave of the COVID-19 pandemic in Recife, the capital city of the Brazilian
state of Pernambuco. This city, home to approximately 1.6 million people according to the
most recent estimates from the Brazilian Institute of Geography and Statistics (IBGE) [52],
detected its first COVID-19 cases on 12 March 2020. Just over a week later, a state of public
calamity was declared in Recife, as documented officially by the executive branch of its
municipality [53]. As the number of cases increased, restrictions were imposed on the
movement of individuals, as well as mandatory mask use in public zones of Recife and
four other cities in its Metropolitan Region (Camaragibe, Olinda, Jaboatão dos Guararapes,
and São Lourenço da Mata). These restrictions were lifted on 31 May 2020, but mask use
remained mandatory.

Our case study analyzes the initial six months of the COVID-19 outbreak in Recife,
Brazil, with a primary focus on the application and efficacy of ARIMA models in short-term
forecasting. The importance of precise short-term predictions in the context of a rapidly
progressing pandemic cannot be overstated. These predictions are essential to enable rapid
strategic responses aimed at reducing the spread of the disease.

In the present study, we leverage ARIMA models for forecasting COVID-19 cases.
Despite the increasing prevalence of such usage in recent years, the power of ARIMA
models is still noteworthy, particularly in generating reliable short-term predictions. While
ARIMA models may not perfectly capture the non-linearity inherent in the COVID-19
data, it has shown considerable utility in facilitating swift and informed decision-making
processes within the domain of public health strategies. Moreover, we introduce a variety
of predictive ML techniques. These techniques, although not directly applied in our
forecasting of COVID-19 cases, were presented in this overview to expand the range of
understanding regarding the available methodological tools in this area of research.

Our dataset for this study represents a highly volatile and critical phase of the pan-
demic. Regardless of its limitations, these data effectively demonstrated the resilience and
dependability of ARIMA models in generating accurate short-term forecasts amid a rapidly
evolving scenario. The obtained results emphasize the potential value of such models in
the context of pandemic forecasting. Furthermore, we would like to highlight that this
article not only presents a case study, but also acts as a comprehensive overview of the
current state of research on pandemic modeling and prediction.

The article is organized as follows. The introduction in Section 1 includes a literature
review of existing research on the topic. Section 2 serves as a mathematical background and
is divided into three subsections, which provide ML techniques pertinent to conducting
predictions, state ARIMA models, discuss the parameter optimization process, and present
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key metrics for assessing the performance of statistical or ML models. In Section 3, we
describe the dataset, conduct the data analysis, select six periods of interest, and compare
the predictions made by the ARIMA model with observed data. Finally, Section 4 concludes
the work, summarizing our findings and offering final remarks.

2. Mathematical Background

This section provides background of fundamental mathematical concepts and key ML
techniques. The purpose of this background is to establish a comprehensive foundation of
the tools and methodologies that are employed in data analysis and predictive modeling.

2.1. Predictive Machine Learning Techniques

ML techniques, including deep learning, constitute a subfield of computer science that
engage in the training process by leveraging historical data. The deep learning techniques
are particularly relevant given their ability to learn from large datasets, make predictions,
and recognize patterns in a way that surpasses many traditional ML methods. The chosen
algorithm for ML and deep learning determines an appropriate model, the selection of
which is influenced by data attributes, with the ultimate goal of predicting future values.
Within this ML paradigm, the algorithm employs a dataset, consisting of input instances
and output values (or targets), for the purpose of model training. Once trained, the model
is capable of generating predictions for a test dataset not previously found [54]. These ML
strategies harness both regression and classification to facilitate predictive modeling.

Support vector machines, neural networks, logistic regression, and deep learning
models have been leveraged to interpret and project the progression of COVID-19 [33,55].

While the use of generalized linear models via penalized maximum likelihood (GLM-
Net), random forest, XGBoost, and deep learning techniques may not be directly applicable
to our specific data analysis, their brief discussion is provided due to the prominence
and applicability of these techniques in the broader field of ML. A concise discussion
of such techniques enriches our understanding of the diversity and capabilities of ML
algorithms, even though they are used in our analysis. They provide a frame of reference
and a foundation that could inspire future research directions or alternative approaches to
data analysis. For example, GLMNet, which blends LASSO—least absolute shrinkage and
selection operator—and ridge regression techniques, serves as an effective tool for variable
selection and regularization in datasets with potentially correlated covariates, and there-
fore, it provides a helpful perspective on dealing with multicollinearity in ML applications.
Moreover, the inclusion of deep learning, a significant branch of ML, adds depth to our
overview. Deep learning has become increasingly popular due to its superior performance
in handling large, high-dimensional data, and its proficiency in capturing complex patterns.
It has been effectively used in various fields, including image recognition, natural language
processing, and indeed, pandemic prediction and progression modeling. The exploration of
deep learning methods in this background adds a crucial dimension to the understanding
of available tools and methodologies for predictive modeling.

GLMNet employs the elastic net, a form of the shrinkage method. It includes ridge
regression and LASSO as special cases. This property of GLMNet allows it to handle
problems where the number of variables p is much greater than the size of the sample n
(that is, n << p). The elastic net introduces a penalty term formulated as

Pγ(α) =
p

∑
j=1

(0.5(1− γ)α2
j + γ|αj|),

into the objective function [56], which can be expressed as

min
(αo ,α)∈Rp+1

{
1

2n

n

∑
i=1

(
Yi − αo − x>i α

)2
+ τPγ(α)

}
. (1)
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In the objective function presented in (1), γ is a parameter that determines the type
of shrinkage applied during the estimation process, while τ is a penalty parameter that
manages the degree of shrinkage. The response variable is represented by Yi ∈ R, and the
values of the covariate vector are denoted as xi ∈ Rp, for i ∈ {1, . . . , n}. The regression
intercept is αo, and the regression coefficients associated with the covariate vector are in
the form of α = (α1, . . . , αp), where each αj is an element of the vector α, for j ∈ {1, . . . , p}.
Note that p and n, respectively, represent the number of covariates and the sample size
of the dataset. We can assume a linear regression structure represented by E(Y|X = x) =
αo + x>α, where “E” signifies the expected value of Y conditional to X = x. The glmnet
package of the R software provides various regression methods for variable selection and
prediction, especially when n << p. If γ = 1, the package defaults to LASSO with
l1 penalty, enabling both parameter shrinkage and variable selection. If γ = 0, ridge
regression with L2 penalty is implemented. For optimal use of the elastic net, a value of
0 < γ < 1 is considered. The value of γ selectively shrinks certain coefficients to zero,
enabling sparse selection. The model structure requires variable selection to form a subset of
covariates. The elastic net approach is designed to handle the p >> n problem, indicating
that the number of parameters significantly exceeds the sample size used in modeling.
It is particularly effective when groups of highly correlated covariates are formed. The
model combines variable selection with its structure to enhance accuracy. If a group of
covariates is highly correlated and one variable is chosen for the sample, the entire group is
automatically included in the model.

As GLMNet, random forest is an ensemble learning method that operates by construct-
ing multiple decision trees and outputs the class that represents the mode of the classes (for
classification problems) or mean prediction of the individual trees (for regression problems).
The use of random forest is justified due to its robustness against overfitting, and its ability
to handle large datasets with high dimensionality, which makes it widely applicable in
diverse ML scenarios. Random forest operates by combining two methods, bootstrap
aggregating (bagging) and the random subspace method, which are used to construct a set
of decision trees. Each tree in the ensemble is independently built, and the final output is
obtained by aggregating the predictions of these individual decision trees. The construc-
tion of a single decision tree in a random forest involves two random selection processes.
The first process randomly selects training samples from the dataset with replacement
(bootstrapping), while the second process randomly selects a subset of features at each
selected sample. Once the decision trees are built, classification or regression predictions
are obtained through a voting method. For classification, each tree in the forest votes for a
class and the class with the majority of votes is selected as the final output. For regression,
the final prediction is the average of the outputs from all the trees. Formally, a random
forest can be defined as a collection of decision tree functions g(x, ϕl), for l ∈ {1, . . . , L},
where ϕl is an independent random vector parameter, and x represents the input data
values. Each decision tree is characterized by a unique random vector of parameters, a
distinct set of randomly chosen features, and a unique subset of bootstrapped sample data
that serves as the training set. Random forest builds independent and diverse decision
trees capitalizing on randomization. Consequently, random forest is considered a robust
and versatile classifier, capable of handling a wide range of data scenarios. The random
forest approach [57] is represented in Algorithm 1.
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Algorithm 1 Structure of the random forest

Step 1: Select L decision trees, n training data that each tree links, and N bootstrap samples.
Step 2: Form L training groups with N times bootstrap samples.
Step 3: Collect m dissection features randomly on a single node from M sample features, for

m << M.
Step 4: Calculate the best dissection feature according to m features for every decision tree

node.
Step 5: Construct each decision tree entirely increasing without trimming.
Step 6: Classify data from the testing set with the random forest model formed by various

decision trees.
Step 7: Evaluate the adequacy of the random forest model.
Step 8: Use the random forest model if this is adequate.

XGBoost is a gradient boosting framework that utilizes decision trees and has gained
popularity for its computational efficiency and superior performance across a variety of
ML tasks. An understanding of this technique provides insights into gradient boosting
methods and how they can enhance model performance by reducing both bias and variance.
XGBoost is a ML technique that employs an ensemble methodology known as tree boosting.
XGBoost is used widely for tasks involving regression and classification, capitalizing on
the power of the boosting technique. In each iteration, XGBoost generates a new ‘weak’
learner and incorporates it into the existing model, thereby gradually improving the overall
model’s predictive performance. The XGBoost model operates based on the principle
of gradient boosting, specifically focusing on optimizing a specific loss function. This
principle differentiates XGBoost from the random forest algorithm, where decision trees
are built independently. In contrast, the gradient boosting method adds a new tree in each
iteration to correct the errors made by the current ensemble of trees. This iterative process
continues until a specified number of trees is reached, or the improvement in loss function
falls below a threshold. This step-by-step refinement of the model is what characterizes
gradient boosting methods like XGBoost. In essence, the XGBoost technique constructs new
models to predict the errors of prior models, subsequently making improved predictions.
This iterative process enhances the model’s predictive capacity over time. Mathematically,
the objective function of the XGBoost model can be formulated by the equation stated as
Θ(F) = L(λ) + Ω(F). In this equation, L(λ) represents the loss function, which governs
the predictive power of the model, while Ω(F) is the regularization term that helps control
the model complexity and prevent overfitting. The balance between these two terms, the
predictive power and the control of overfitting, helps to optimize the model’s performance.

Deep learning is based on artificial neural networks with representation learning capa-
bilities. Deep learning architectures such as deep neural networks, deep belief networks,
recurrent neural networks, and convolutional neural network (CNN) have been applied
across various fields, consistently demonstrating remarkable accuracy in tasks driven by
pattern recognition in data. Comparatively, methods like random forest, while simpler
to train and interpret, can struggle with tasks involving high-level feature interactions
and sequence prediction—areas where deep learning models particularly excel. Moreover,
deep learning models have the advantage of being able to automatically discover intricate
structures in high-dimensional data, a task that often requires manual feature engineering
in the case of random forest. Deep learning models are constructed using multiple layers
of artificial neurons or nodes, designed to mimic the structure and function of the human
brain. By processing data and creating patterns for decision-making, these models are
the key technology behind advanced applications, including natural language processing,
speech recognition, computer vision, and bioinformatics, among others. One of the most
common types of deep learning models is the CNN. Primarily used in image processing,
CNNs have shown promising results in medical image classification, including COVID-19
diagnosis. A CNN typically comprises an input and output layer, alongside multiple
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hidden layers. These hidden layers often include convolutional layers, which are layers
with activation functions such as ReLU, pooling layers, and fully connected layers.

Another significant model in deep learning is the recurrent neural network (RNN).
RNNs are especially effective when dealing with sequence data, owing to their unique
structure, that is, they maintain a form of memory by using their own output as an input
for the next step. This makes RNNs particularly effective for tasks like time series analysis
and natural language processing, where the order of data points is significant.

2.2. ARIMA Models and Parameter Estimation

ARIMA is a renowned family of time-series models that was originated for its usage in
economics [58]. This family of models, capable of predicting future points in a time series
dataset, are appreciated for their statistical traits, their capacity to implement a range of
exponential smoothing models, and the integration of the Box–Jenkins method during the
model training phase. An explanation of these models can be found in [46], and details on
computational and theoretical aspects are available, for example, in [59,60].

Before diving into the ARIMA model, it is crucial to understand the backshift operator
B, a helpful notational device when dealing with lags of a sequence. For a time series Yt,
the lagged series is denoted by BYt = Yt−1 and similarly, BkYt = Yt−k.

The ARIMA model contains three parameters (p, d, q) and can be represented as

(1− B)dYt = µ + Φ(B)(1− B)dYt = µ + Φ(B)Z(t) + Θ(B)εt,

where Φ(B) is the autoregressive operator of order p, that is,

Φ(B) = 1− φ1B− φ2B2 − · · · − φpBp,

Θ(B) is the moving average operator of order q, that is,

Θ(B) = 1 + θq1B + θ2B2 + · · ·+ θqBp,

Zt is a white noise process with zero mean and constant variance σ2; and εt is the error term.
An ARIMA model operates on the assumption of stationarity, meaning that the time

series has constant mean and variance over time. Note that d in ARIMA stands for differ-
encing, which is used to make the series stationary if it is not already. Differencing involves
the transformation of the series to differences between consecutive observations. Yt −Yt−1
namely. Differencing can be applied more than once if the series is still not stationary,
which is reflected in the value of d in the ARIMA(p, d, q) model. It is usual to represent the
ARIMA(p, q, d) model in an alternative form given by

Yt = c + φ1Yt−1 + · · ·+ φpYt−p + θ1εt−1 + · · ·+ θqεt−q + εt,

where Yt is the observation at time t, φj is the parameter of the autoregressive part of the
model, θk is the parameter of the moving average part, and εt is the error term.

The autoregressive order p represents the number of lags of Y to be used as predictors.
The order of integration d is the number of times the data have had past values subtracted
(also known as differencing) to make the time series stationary. Then, q is the moving
average order that represents the number of lagged forecast errors that should go into the
ARIMA model. The autocorrelation function (ACF) and partial autocorrelation function
(PACF) are essential tools in time series analysis, especially for determining the parameters
(p, q) of an ARIMA model. On the one hand, the ACF measures the correlation between
observations of a time series at two points in time, as a function of the time lag between the
two points. The PACF, on the other hand, measures the correlation between observations
at two points in time while controlling for the values at all shorter lags.

Once the model orders are identified (that is, the values of p, d, and q), the param-
eters of the ARMA model can be estimated. Several methods can be used to estimate
these parameters, with the maximum likelihood estimation being one of the most com-
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mon. The parameters are chosen in a way that maximizes the likelihood function of the
observed data for the corresponding the model. Given a sample of n observations from
a time series {y1, . . . , yn}, the likelihood function for an ARIMA model can be written
as L(Θ; y1, . . . , yn) = f (y1, . . . , yn; Θ), where Θ represents the vector of parameters to be
estimated, whereas f is the joint probability density function (PDF) of the observed data
and the parameter Θ.

The log-likelihood function is typically used in practice due to its mathematical conve-
nience. The log-likelihood function for an ARIMA model is given by

l(Θ; y1, . . . , yn) = log(L(Θ; y1, . . . , yn)).

Note that the likelihood function, L, quantifies how well a particular statistical model
explains the observed data. In other words, it is a measure of how likely the observed data
are for the specific parameters of the model.

For an ARIMA model, the likelihood function is based on the assumption that the
errors at each point in time follow a Gaussian or normal distribution. The likelihood of
observing the data for the model parameters is calculated by evaluating the PDF of this
normal distribution at each data point and then taking the product of these PDFs (assuming
independence across time). Mathematically, for a sample of size n, if the errors are denoted
by ε1, ε2, . . . , εn, the likelihood function is stated as

L(φ, θ, σ2) =
n

∏
i=1

1√
2πσ

exp

(
−

ε2
i

2σ2

)
.

The maximum likelihood estimates of the parameters are the values that maximize
this log-likelihood function. For an ARMA(p, q) model, the parameters to be estimated
include the autoregressive coefficients φj, for j ∈ {1, . . . , p}, the moving average coefficients
θk, for k ∈ {1, . . . , q}, and the variance of the error term σ2. The optimization process of
the likelihood function for an ARIMA model involves initial values of the process, which
are usually unknown. Different ways of dealing with these initial values can lead to
different values of the likelihood function and hence different estimates of the parameters.
In practice, the exact maximization of the likelihood function can be quite complicated
due to the high dimensionality of the parameter space and the possibility of multiple
local maxima. Therefore, numerical optimization methods are typically used to find the
maximum likelihood estimates of the ARIMA parameters.

In ARIMA structures, model selection can be automated for optimal predictive accu-
racy. The model orders (p, d, q) can be chosen to minimize the Akaike information criterion
(AIC), the corrected Akaike information criterion (AICc), or the Bayesian information
criterion (BIC). The formulas for these criteria are given by

AIC = −2 log(L) + 2k, AICc = AIC +
2k(k + 1)
n− k− 1

, BIC = −2 log(L) + k log(n),

where L is the likelihood function of the data under the model, n is the sample size, and k
is the total number of parameters in the model, with k = p + q + d + 1 if the intercept term
is non-zero, and k = p + q + d if the intercept term is zero.

Automatic ARIMA modeling is an approach that leverages statistical methodologies
and computational capabilities to automatically determine the parameters (p, d, q) of an
ARIMA model. A method used for automatic ARIMA modeling is the auto.arima()
function implemented in the forecast package of the R software [61], developed in [62].
This function performs a unit root test to decide on the order of differencing (d), and
then selects the best (p, q) order based on the AIC. This is performed through a stepwise
search or, optionally, through a more exhaustive search. The auto.arima() function is
summarized in Algorithm 2, which offers an efficient and effective way of selecting the
most suitable ARIMA model for a given time series dataset. Starting from an initial ARIMA
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model with (p, d, q) = (0, d, 0), the function automatically adjusts the values of p and q
using a stepwise search, incrementally increasing or decreasing these parameters based
on whether this improves the AIC score. This automated process effectively identifies
the appropriate lag values for the autoregressive and moving average parts of the model,
traditionally carried out through manual inspection of ACF and PACF plots.

Algorithm 2 Structure of the auto.arima() function

Step 1: Determine the optimal order of differencing, d, using unit root tests, such as the
augmented Dickey–Fuller or the Kwiatkowski–Phillips–Schmidt–Shin test.

Step 2: Find the values of p and q that minimize the AIC, performing a stepwise search
through the model space, starting with (p, d, q) = (0, d, 0) and then incrementally
increasing or decreasing the values of p and q based on whether the AIC decreases.

Step 3: Estimate the parameters of the ARIMA model using the maximum likelihood
method, where numerical optimization algorithms are employed to find the parameters
that maximize the likelihood function of the observed data for the model.

Step 4: Return the ARIMA model with the optimal parameters.
Step 5: Evaluate the adequacy of the ARIMA model.
Step 6: Use the ARIMA model if this is adequate.

The effectiveness of an ARIMA model is primarily evaluated based on forecast accu-
racy, which is measured using the model’s forecast errors. The observed data are divided
into two subsets: a training set, which aids in parameter estimation, and a test set, used
to ascertain the accuracy of the forecast. Assume that the observed dataset has a size of
n, and the test set has a size of m, where m < n. Ideally, m should be equivalent to the
forecasted time-period. The forecast error is defined as the difference between the observed
and forecasted values.

There are several measures utilized to quantify these forecast errors, including scale-
dependent indicators like the mean absolute error (MAE), root mean squared error (RMSE),
and scale-independent indicators like the mean absolute percentage error (MAPE). In
addition to these measures, other error indicators such as the mean absolute scaled error
(MASE), the symmetric mean absolute percentage error (SMAPE), and the coefficient of
determination, also known as R-squared, can be used. These error measures are extensively
utilized in time series forecasting literature for model comparison and validation [62].

2.3. Model Evaluation Metrics

Evaluation metrics are key to assessing the performance of statistical or ML models.
They help us to understand how well a model is performing by comparing the predicted
values with the observed values. Depending on the problem at hand, different metrics may
be more or less suitable. Therefore, there are a variety of metrics to meet various needs.

The MAE is one of the simplest regression metrics that is easy to understand and com-
pute. By calculating the average of absolute differences between predicted and observed
values, it provides an intuitive measure of prediction error magnitude and is given by

MAE =
1
n

n

∑
i=1
|Yi − Fi|,

which states the difference between the observed (Yi) and forecasted (Fi) values for case i.
The MAPE is used when it is important to represent the prediction error in terms of

the relative size of the observed value. This can be helpful in situations where the scale of
the data is relevant and it is stated as

MAPE =
1
n

n

∑
i=1

∣∣∣∣Yi − Fi
Yi

∣∣∣∣× 100%.
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The MASE was introduced [62] specifically for time-series forecasting, as it scales the
prediction error of a simple benchmark. The MASE allows for meaningful comparisons
across different time series, which can have different scales and seasonal patterns and it is
formulated as

MASE =
MAE

MAEin-sample
=

1
n ∑i|Yi − Fi|

1
(T−1) ∑T

t=2|Yt − Xt−1|
.

Note that the MASE is used as a measure of the accuracy of forecasts, with the
denominator MAEin-sample being the MAE of the one-step naive forecast method on the
training set (here defined as t ∈ {1, . . . , T}), that uses the true value from the prior period
as the forecast, that is, Ft = Yt−1.

The SMAPE treats over-forecast and under-forecast symmetrically, making it a better
choice than the MAPE when these features of forecasting are important. The SMAPE is
commonly utilized in demand planning and sales forecasting, and it is expressed as

SMAPE =
1
n

(
n

∑
i=1

|Fi −Yi|
|Fi |+|Yi |

2

)
× 100%,

which is based on the percentage error.
The RMSE is a powerful and commonly used regression metric that penalizes large

errors due to squaring the differences. The RMSE makes is particularly helpful when large
errors are especially undesirable and it is given by

RMSE =

√
1
n

n

∑
i=1

(Yi − Fi)2,

which corresponds to the square root of the mean square error.
The R-squared is employed when we are interested in explaining the proportion of

variance captured by the model. The R-squared is a key metric for understanding how
much of the target variable’s variability can be explained by our model and it is defined as

R-squared = 1− ∑n
i=1(Yi − Fi)

2

∑n
i=1(Yi −Y)2

,

3. Case Study in Brazil

In this section, we present a detailed case study that applies the ARIMA model to
forecast COVID-19 cases in the city of Recife, Brazil. We begin by describing the data used in
our analysis and subsequently discuss the methodology and findings of our data analysis.

3.1. Data

The data pertaining to the COVID-19 pandemic in Recife were sourced from an IO
Brazilian platform [63], which is a resource that consolidates public data presenting them
in a user-friendly format. IO platforms are a generic domain that is popular in the tech
world since IO or I/O means input/output in computer science.

The data under consideration cover from 12 March 2020, when the first two cases were
identified in Recife, up until 15 September 2020. It was necessary to process the dataset for
covering the gap of the missing days, that is, 16, 19, and 20 March, 6 May, and 6 September.
This gap was bridged by linearly interpolating the last day preceding and the first day
following the missing cases, and then rounding to the nearest whole number.

For model training, we selected a period of the first 60 days, from 12 March to 10 May
2020. This is because the city’s restrictive measures to curb the pandemic were instituted
on 11 May 2020.

The mentioned period was further extended until 31 May 2020, resulting in a total of
21 days. We adopted this duration as a time unit and chose six periods of 21 days each to
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compare the model forecasts with the observed data, despite the fact that the more stringent
measures were only enforced during the first of these periods. Such periods are detailed in
Table 1. By the end of the last period, the state of Pernambuco was nearing the ending of the
first wave, as indicated by a downward trend in the daily number of new COVID-19 cases.
This trend is illustrated in Figure 1, where the solid line represents a seven-day moving
average of the daily cases, a common technique used to smooth out short-term fluctuations
and highlight longer-term trends in the data.

Table 1. Periods selected for forecasts covering from 12 March 2020 to 15 September 2020.

Period Beginning End Duration

Training 12 March 10 May 60 days

1 11 May 31 May 21 days

2 1 June 21 June 21 days

3 22 June 12 July 21 days

4 13 July 3 August 21 days

5 4 August 24 August 21 days

6 25 August 15 September 21 days

Figure 1. Time series of the number of new daily COVID-19 cases in Pernambuco, Brazil. Adapted
from https://pt.wikipedia.org/wiki/Pandemia_de_COVID-19_em_Pernambuco, last updated on 15
March 2021 (accessed on 08 July 2023).

3.2. Data Analysis and Comparisons

Next, we present the analysis of the data using the ARIMA model. We discuss the
methodology employed, including model selection and parameter estimation. We also
present the results of the ARIMA forecasts and compare them with the observed data.

https://pt.wikipedia.org/wiki/Pandemia_de_COVID-19_em_Pernambuco
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Additionally, we evaluate the accuracy of the predictions and discuss any discrepancies
or limitations encountered during the analysis. The auto.arima() function was used
to automatically select the best parameters p, d, and q for the ARIMA model based on
the training data. The result was that the ARIMA(2,2,1) model provided the best fit for
the training data, meaning it minimized the forecast error better than other models with
different parameters. Thus, the prediction for the observed value of the time series is based
on two past values, where two levels of differencing were required to make the series
stationary, and the observed error (residual) is based on a past error equal to one. The
residuals from this model are depicted in Figure 2. It is important to note that nearly all
lags from the ACF fall within the confidence interval. Moreover, the histogram for the
residuals shows a likeness to a normal distribution.

We conducted a validation of the ARIMA(2,2,1) model by comparing it with eight
other selected ARIMA models. The criteria used for this comparative analysis included
AIC, AICc, BIC, RMSE, MAE, and MAPE. The results of this comparison are presented
in Table 2. It is noteworthy that the ARIMA(2,2,1) model, despite being selected by the
auto.arima() function, does not possess the minimum error values across all measures.
Specifically, it ranks third lowest in terms of RMSE, it has the minimum MAE, and its MAPE
is the third highest. However, this model is preferred because it has the lowest values for
AIC, AICc, and BIC. These information criteria consider both the model’s goodness of fit
and complexity. Therefore, we conclude that the ARIMA(2,2,1) model provides the best
balance of fit and simplicity for the data.

Figure 2. Plots of ARIMA(2,2,1) residuals, where the blue dashed lines indicate the statistical
significance, whereas the red curve represent the normal PDF.



Mathematics 2023, 11, 3069 13 of 18

Table 2. Comparison of precision measures for ARIMA(p, d, q) models.

Model AIC AICc BIC RMSE MAE MAPE

ARIMA(2,2,2) 766.76 767.91 777.06 159.45 79.64 7.56

ARIMA(0,2,0) 800.42 800.49 802.48 232.08 109.15 9.13

ARIMA(0,2,1) 770.80 771.02 774.92 174.83 78.66 7.42

ARIMA(1,2,0) 793.85 794.07 797.97 215.25 99.23 7.88

ARIMA(2,2,1) 765.63 766.38 773.87 160.74 76.18 7.67

ARIMA(1,2,1) 772.77 773.22 778.96 174.77 78.93 7.44

ARIMA(2,2,0) 772.86 773.3 779.04 175.08 86.04 7.64

ARIMA(3,2,1) 767.26 768.41 777.56 160.22 77.83 7.62

ARIMA(3,2,0) 772.34 773.09 780.58 171.27 81.82 7.31

Now, we present a comparison between our forecasts using the ARIMA(2,2,1) model
and the real data observed during the six study periods outlined previously.

In the first study period (11 May to 31 May), Figure 3 (left) shows the forecasted and
observed data. The forecast predicted a value of 14,128, slightly less than the observed
value of 15,474, resulting in a relative error of about 8.7%.

In the second period (1 June to 21 June), our model predicted 21,422 cases, which was
greater than 19,616 cases observed, leading to a relative error of roughly 9.2%; see Figure 3
(right).

The third period (22 June to 12 July) saw our model to forecast 28,716 cases, which
overestimated a number of 22,991 cases, resulting in a relative error of about 25%; see
Figure 4 (left).

During the fourth period (13 July to 3 August), the model predicted 36,011 cases,
which was significantly greater than 27,242 cases, leading to a relative error of around 32%;
see Figure 4 (right).

In the fifth period (4 August to 24 August), our model predicted 43,305 cases, which
again was a value greater than 30,737 cases observed, leading to a relative error of approxi-
mately 41%; see Figure 5 (left).

During the sixth period (25 August to 15 September), the model predicted 50,599 cases,
which was considerably greater than 32,509 cases, resulting in a relative error of around
56%; see Figure 5 (right).

In all periods, 80% and 95% confidence intervals were also calculated and are shown
in the corresponding figures. In summary, our ARIMA(2,2,1) model tended to overestimate
the number of COVID-19 cases in each period. Future work could focus on refining this
model to reduce the relative error.

We divided our forecasts into distinct periods to evaluate the performance of the
ARIMA model under varying conditions over the course of the pandemic. This segmenta-
tion allowed us to analyze how the model’s predictive accuracy changed in response to
shifts in the pandemic’s trajectory, such as during the initial outbreak, the implementation
of restrictive measures, and the relaxation of these measures. The two colored confidence
intervals in Figures 3–4 represent different levels of certainty in our forecasts. The darker
shaded region represents a 95% confidence interval and the lighter shaded region repre-
sents an 80% confidence interval. This dual-level confidence representation allows us to
communicate the inherent uncertainty of our forecasts more comprehensively.
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Figure 3. Forecasts of the ARIMA(2,2,1) model and number of new daily COVID-19 cases in Recife,
Brazil, until the end of periods (left) 1 and (right) 2.

Figure 4. Forecasts of the ARIMA(2,2,1) model and observed number of new daily COVID-19 cases
in Recife, Brazil, until the end of periods (left) 3 and (right) 4.

Figure 5. Forecasts of the ARIMA(2,2,1) model and observed number of new daily COVID-19 cases
in Recife, Brazil, until the end of periods (left) 5 and (right) 6.
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3.3. ARIMA Model: A Dual Perspective on Strengths and Weaknesses

This subsection serves as a concise mirror, reflecting both the merits and demerits of
the ARIMA model. In relation to the strengths of the ARIMA model, we have that:

• It excels in the arena of short-term forecasting, as the ARIMA model offers precise
prognostications for condensed time periods.

• It has a mastery in providing short-term predictions, fortifying immediate decision-
making strategies and actions.

• It complements long-term forecasting mechanisms, as the ARIMA model yields valu-
able insights into imminent trends and near-future scenarios.

About drawbacks of the ARIMA model, we have that:

• Although it is potent in short-term forecasting, the ARIMA model may struggle to
fully grasp long-term trends, especially in the presence of structural shifts in data.

• Its dependency on historical data for its predictions might limit its ability to accurately
predict in situations marked by abrupt alterations or unprecedented conditions.

4. Conclusions

Our study emphasized the potential of predictive modeling in informing public health
strategies during a pandemic. The COVID-19 pandemic has shown the critical importance
of accurate and timely predictions in managing disease spread and mitigating its impacts.
As we continue to face this unprecedented global health crisis, the further development
and refinement of these predictive models will be of paramount importance.

Throughout this article, we provided an extensive review of predictive methods used
for forecasting COVID-19 cases across various countries and under numerous conditions.
The objective of this review was to understand the effectiveness and limitations of these
methods, with a special focus on the application of ARIMA models. These models have
been used to develop forecasts for many diseases. Our research evaluated the quality of
these predictions by using data for confirmed cases of COVID-19 in the city of Recife, in the
Brazilian state of Pernambuco, which is situated in the country’s northeastern region. We
showed that the prediction was always within the 80% confidence interval, except for the
first analyzed period when the more restrictive measures of circulation of individuals in the
city had been implemented. This caused a prediction greater than the real observed value,
with a relative error of around 8.7%. However, as the end of the forecast went further into
the future, the quality of the predictions fell considerably. The relative error was kept below
10% until the end of the second period of analysis, which ended 42 days after the beginning
of the forecast, but reached values greater than 50% by the end of the sixth period, around
four months after the analysis started. It was observed that the forecast underestimated
the observed data from around the middle of the second period onwards. Therefore, this
kind of modeling is effective when the predictions are for the short term. Moreover, the
model was unable to detect the stabilization of the confirmed cases curve, which occurred
during the study’s fifth period of interest (the plateau we see in Figure 1 between May and
September), or the deceleration that marked the end of the first wave of the epidemic. This
is a recurrent theme when choosing ARIMA models because they would not be adequate
to deal with phenomena presenting complex or dynamic characteristics.

Our study’s novelty lies not in the ARIMA model itself but in its application and metic-
ulous evaluation in the unique context of Recife city in northeastern Brazil. We illuminate
the distinct challenges encountered due to sudden interventions like restrictive measures
and the fluctuating phases of the pandemic. Additionally, we underlined the hurdles
associated with data gathering and reporting issues, offering an original contribution to un-
derstanding the role and limitations of ARIMA models in forecasting within such intricate
and dynamic environments. Our findings accentuate the necessity for continuous model
scrutiny and adjustment to uphold predictive accuracy, which, in turn, can contribute
towards more effective public health responses during such unstable and unforeseeable
health crises.
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Moving forward, it would be beneficial to explore hybrid models or models that
can better account for such interventions and abrupt changes. Furthermore, continued
monitoring and adaptation of these models will be essential in maintaining their predictive
power and informing public health responses.

Author Contributions: Conceptualization: R.O., J.A.M.G., V.L. and C.C. data curation: R.O. and
J.A.M.G. formal analysis: R.O., J.A.M.G., V.L. and C.C. investigation, R.O., J.A.M.G., V.L. and C.C.
methodology: R.O., J.A.M.G., V.L. and C.C. writing—original draft: R.O., J.A.M.G. and C.C. writing—
review and editing: V.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Council for Scientific and Technologi-
cal Development (CNPq) through the grant 303192/2022-4 (R.O.), and Comissão de Aperfeiçoamento
de Pessoal do Nível Superior (CAPES), from the Brazilian government; by FONDECYT, grant number
1200525 (V.L.), from the National Agency for Research and Development (ANID) of the Chilean
government under the Ministry of Science and Technology, Knowledge, and Innovation; and by Por-
tuguese funds through the CMAT—Research Centre of Mathematics of University of Minho—within
projects UIDB/00013/2020 and UIDP/00013/2020 (C.C.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and codes used in this study are available under request.

Acknowledgments: The authors would like to thank the editors and four reviewers for their con-
structive comments, which led to improvement in the presentation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Worldometers. COVID-19 Coronavirus Pandemic. 2021. Available online: https://www.worldometers.info/coronavirus/

(accessed on 8 July 2023).
2. Alkadya, W.; ElBahnasy, K.; Leiva, V.; Gad, W. Classifying COVID-19 based on amino acids encoding with machine learning

algorithms. Chemom. Intell. Lab. Syst. 2022, 224, 104535. [CrossRef]
3. Ullah, A.; Malik, K.M.; Saudagar, A.K.J.; Khan, M.B.; Hasanat, M.H.A.; AlTameem, A.; Sajjad, M. COVID-19 genome sequence

analysis for new variant prediction and generation. Mathematics 2022, 10, 4267. [CrossRef]
4. Alam, M.T.; Sohail, S.S.; Ubaid, S.; Ali, Z.; Hijji, M.; Saudagar, A.K.J.; Muhammad, K. It’s your turn, are you ready to get

vaccinated? Towards an exploration of vaccine hesitancy using sentiment analysis of Instagram posts. Mathematics 2022, 10, 4165.
[CrossRef]

5. Xu, J.; Tang, Y. Bayesian framework for multi-wave COVID-19 epidemic analysis using empirical vaccination data. Mathematics
2021, 10, 21. [CrossRef]

6. Nguyen, P.H.; Tsai, J.F.; Lin, M.H.; Hu, Y.C. A hybrid model with spherical fuzzy-AHP, PLS-SEM and ANN to predict vaccination
intention against COVID-19. Mathematics 2021, 9, 3075. [CrossRef]

7. Ferguson, N.; Laydon, D.; Nedjati Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Perez, Z.C. Impact of Non-Pharmaceutical
Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand; Imperial College London: London, UK , 2020.

8. Brauer, F. The Kermack-McKendrick epidemic model revisited. Math. Biosci. 2005, 198, 119–131. [CrossRef]
9. Cortés-Carvajal, P.D.; Cubilla-Montilla, M.; González-Cortés, D.R. Estimation of the instantaneous reproduction number and its

confidence interval for modeling the COVID-19 pandemic. Mathematics 2022, 10, 287. [CrossRef]
10. Peng, L.; Yang, W.; Zhang, D.; Zhuge, C.; Hong, L. Epidemic analysis of COVID-19 in China by dynamical modeling. arXiv 2020,

arXiv:2002.06563.
11. Jia, J.; Ding, J.; Liu, S.; Liao, G.; Li, J.; Duan, B.; Wang, G.; Zhang, R. Modeling the control of COVID-19: Impact of policy

interventions and meteorological factors. Electron. J. Differ. Equ. 2020, 23, 1–24.
12. Castilho, C.; Gondim, J.A.M.; Marchesin, M.; Sabeti, M. Assessing the efficiency of different control strategies for the COVID-19

epidemic. Electron. J. Differ. Equ. 2020, 64, 1–17.
13. Prem, K.; Liu, Y.; Russell, T.W.; Kucharski, A.J.; Eggo, R.M.; Davies, N.; Klepac, P. The effect of control strategies to reduce social

mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study. Lancet Public Health 2020, 5, e261–e270.
[CrossRef] [PubMed]

14. Hou, C.; Chen, J.; Zhou, Y.; Hua, L.; Yuan, J.; He, S.; Guo, Y.; Zhang, S.; Jia, Q.; Zhao, C.; et al. The effectiveness of quarantine of
Wuhan city against the corona virus disease 2019 (COVID-19): A well-mixed SEIR model analysis. J. Med. Virol. 2020, 92, 841–848.
[CrossRef] [PubMed]

15. Lenhart, S.; Workman, J.T. Optimal Control Applied to Biological Models; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007.

https://www.worldometers.info/coronavirus/ on 06/12/2021
http://doi.org/10.1016/j.chemolab.2022.104535
http://dx.doi.org/10.3390/math10224267
http://dx.doi.org/10.3390/math10224165
http://dx.doi.org/10.3390/math10010021
http://dx.doi.org/10.3390/math9233075
http://dx.doi.org/10.1016/j.mbs.2005.07.006
http://dx.doi.org/10.3390/math10020287
http://dx.doi.org/10.1016/S2468-2667(20)30073-6
http://www.ncbi.nlm.nih.gov/pubmed/32220655
http://dx.doi.org/10.1002/jmv.25827
http://www.ncbi.nlm.nih.gov/pubmed/32243599


Mathematics 2023, 11, 3069 17 of 18

16. Gondim, J.A.M.; Machado, L. Optimal quarantine strategies for the COVID-19 pandemic in a population with a discrete age
structure. Chaos Solitons Fractals 2020, 140, 110166. [CrossRef] [PubMed]

17. Eikenberry, S.E.; Mancuso, M.; Iboi, E.; Phan, T.; Eikenberry, K.; Kuang, Y.; Kostelich, E.; Gumel, A.B. To mask or not to mask:
Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic. Infect. Dis. Model. 2020, 5,
293–308. [CrossRef]

18. Gondim, J.A.M. Preventing epidemics by wearing masks: An application to COVID-19. Chaos Solitons Fractals 2021, 143, 110599.
[CrossRef]

19. Stutt, R.O.J.H.; Retkute, R.; Bradley, M.; Gilligan, C.A.; Colvin, J. A modelling framework to assess the likely effectiveness of
facemasks in combination with ’lock-down’ in managing the COVID-19 pandemic. Proc. R. Soc. A 2020, 476, 20200376. [CrossRef]

20. Vasconcelos, G.L.; Brum, A.A.; Almeida, F.A.G.; Macêdo, A.M.S.; Duarte-Filho, G.C.; Ospina, R. Standard and Anomalous Waves
of COVID-19: A Multiple-Wave Growth Model for Epidemics. Braz. J. Phys. 2021, 51, 1867–1883. [CrossRef]

21. Vasconcelos, G.L.; Macêdo, A.M.S.; Duarte-Filho, G.C.; Brum, A.A.; Ospina, R.; Almeida, F.A.G. Power law behaviour in the
saturation regime of fatality curves of the COVID-19 pandemic. Sci. Rep. 2021, 11, 4619. [CrossRef]

22. Wu, K.; Darcet, D.; Wang, Q.; Sornette, D. Generalized logistic growth modeling of the COVID-19 outbreak: Comparing the
dynamics in provinces in China and in the rest of the world. Nonlinear Dyn. 2020, 101, 1561–1581. [CrossRef]

23. Pérez-Ortega, J.; Almanza-Ortega, N.N.; Torres-Poveda, K.; Martínez-González, G.; Zavala-Díaz, J.C.; Pazos-Rangel, R. Appli-
cation of data science for cluster analysis of COVID-19 mortality according to sociodemographic factors at municipal level in
Mexico. Mathematics 2022, 10, 2167. [CrossRef]

24. Ogundokun, R.O.; Awotunde, J.B. Machine learning prediction for COVID-19 pandemic in India. medRxiv 2020,
medRxiv:2020.05.20.20107847.

25. Marzouk, M.; Elshaboury, N.; Abdel-Latif, A.; Azab, S. Deep learning model for forecasting COVID-19 outbreak in Egypt. Process.
Saf. Environ. Prot. 2021, 153, 363–375. [CrossRef] [PubMed]

26. Verma, H.; Mandal, S.; Gupta, A. Temporal deep learning architecture for prediction of COVID-19 cases in India. Expert Syst.
Appl. 2022, 195, 116611. [CrossRef] [PubMed]

27. ArunKumar, K.E.; Kalaga, D.V.; Sai Kumar, C.M.; Chilkoor, G.; Kawaji, M.; Brenza, T.M. Forecasting the dynamics of cumulative
COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-regressive
integrated moving average (ARIMA) and seasonal auto-regressive integrated moving average (SARIMA). Appl. Soft Comput.
2021, 103, 107161. [PubMed]
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