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ABSTRACT
In this work, we construct and test an analytical model and a semi-analytical secular model
for two planets locked in a coorbital non-coplanar motion, comparing the results with the
restricted three-body problem. The analytical average model replicates the numerical N-body
integrations, even for moderate eccentricities (�0.3) and inclinations (�10◦), except for the
regions corresponding to quasi-satellite and Lidov–Kozai configurations. Furthermore, this
model is also useful in the restricted three-body problem, assuming a very low mass ratio
between the planets. We also describe a four-degree-of-freedom semi-analytical model valid
for any type of coorbital configuration in a wide range of eccentricities and inclinations. Using
an N-body integrator, we have found that the phase space of the general three-body problem
is different to the restricted case for an inclined system, and we establish the location of the
Lidov–Kozai equilibrium configurations depending on the mass ratio. We study the stability of
periodic orbits in the inclined systems, and find that apart from the robust configurations, L4,
AL4 and QS, it is possible to HARBOUR two Earth-like planets in orbits previously identified
as unstable (U) and also in Euler L3 configurations, with bounded chaos.

Key words: planets and satellites: dynamical evolution and stability – methods: analytical –
celestial mechanics – Planetary systems.

1 IN T RO D U C T I O N

The three-body problem has been studied for decades, particularly
for the coorbital problem. The coorbital problem or 1:1 mean mo-
tion resonance (1:1 MMR) occurs with a central star and two plan-
ets. The periods of the planets are almost the same, although the
resonance acts to avoid collisions between the bodies. During the
last few years, several approaches have been developed to find new
types of regular orbit for this resonance. In particular, surface of sec-
tions in parametric spaces (Hadjidemetriou, Psychoyos & Voyatzis
2009; Hadjidemetriou & Voyatzis 2011), semi-analytical models
(Giuppone et al. 2010) and analytical models (Robutel & Pousse
2013) have been used.

Efforts have been made to determine the possibility of detect-
ing coorbital planets through the radial velocity signal (Giuppone
et al. 2012; Dobrovolskis 2013; Leleu, Robutel & Correia 2015),
transit detection (Ford & Gaudi 2006) or transit timing variations
if one or both planets transit the stellar disc (Ford & Holman 2007;
Haghighipour, Capen & Hinse 2013; Vokrouhlický & Nesvorný
2014). Although we still do not know the details of the dominant
formation and evolutionary processes of these planetary systems, as
well as their type, a general discussion has been established about
whether or not the planets can be captured in the MMR 1:1.

� E-mail: cristian@oac.unc.edu.ar

Particularly in the non-coplanar case, we think that it is important
to compare the general problem to the restricted problem because
these results can be applied to our own Solar system. For example,
the dynamical structure of the coorbital region provides a possible
origin for coorbital satellites of planets. As pointed out by Namouni
(1999) and Mikkola et al. (2006), transitions from horseshoe (HS)
or tadpole (TP) orbits to quasi-satellite (QS) orbits can be thought
of as a transport mechanism of distant coorbiting objects to a state
of temporary or permanent capture around the planet. Once trapped,
additional mechanisms provide subsequent permanent capture, for
example, collisions with other satellites, mass growth of the planet
or the drag of the circumplanetary nebula. This model can be use-
ful even in the formation of the Janus–Epimetheus system through
collisions. Recently, Morais & Namouni (2016) showed that reso-
nant capture in coorbital motion is present for both prograde and
retrograde orbits.

Classical celestial mechanics books (Moulton 1914; Brouwer
& Clemence 1961) deal with Lagrangian equilibrium points and
the orbits around them in the context of the restricted three-body
problem (RTBP), namely, HS and TP orbits. However, some other
equilibrium orbits have been identified recently. As far as we
know, three different kinds of periodic orbit can be found in the
averaged general three-body problem. It is convenient to de-
scribe the configurations with two angles (σ , �� ) = (λ2 − λ1,
� 2 − � 1), where λi are the mean longitudes and � i are the lon-
gitudes of the pericentre of the planets. Apart from the well-known
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Secular models for planets in coorbital 3D motion 967

Figure 1. The top right-hand panel shows a dynamical map of the plane
(σ , �� ) with the colour scale representing the oscillation amplitude of
σ . Initial osculating elements correspond to two Jupiter planets orbiting
a 1 M� star at 1 au with initial osculating eccentricities ei = 0.4. The
grey-scale indicates the amplitude of oscillation for σ and the dashed region
corresponds to unstable configurations. In the remaining panels, we identify
the three periodic orbits, QS, L4 and AL4, and plot their representation in
the plane (x, y) with the star at the origin. Initial conditions for both planets
are shown with blue circles, with m1 located along the x-axis. Both axis
directions are fixed.

equilateral configurations, located at the classical equilibrium La-
grangian points (L4 and L5) with angles (σ , �� ) = (±60◦, ±60◦),
QS orbits and anti-Lagrangian orbits (AL4 and AL5) are present.
For low eccentricities, anti-Lagrangian orbits are located at (σ ,
�� ) = (±60◦, ∓120◦). One anti-Lagrangian solution ALi is con-
nected to the corresponding Li solution through the σ -family of
periodic orbits in the averaged system (the solutions with zero am-
plitudes of the σ oscillation). The QS orbits are characterized by
oscillations around a fixed point, which is always located at (σ ,
�� ) = (0◦, 180◦), independently of the planetary mass ratio and
eccentricities. In the top right-hand panel of Fig. 1, we construct
a dynamical map with a grey-scale indicating the amplitude of os-
cillation of σ on the plane (σ , �� ) identifying the equilibrium
orbits. Each of the other plots shows the orbital representation of
some configurations in (x, y) astrocentric Cartesian coordinates. We
focus our attention on the L4 and AL4 configurations, because the
L5 and AL5 configurations are dynamically equivalent to the former
[see Hadjidemetriou et al. (2009) and Giuppone et al. (2010)]. Ad-
ditionally, in Fig. 1, we mark with light circles the location of the
Euler configuration, L3, and the centre of the unstable family (U)
studied by Hadjidemetriou et al. (2009) and afterwards related with
the L3 configuration by Robutel & Pousse (2013). We pay special
attention to both configurations in the final section. Note that L3 is
located at (σ , �� ) = (180◦, 180◦), while the unstable configuration
U is located at (σ , �� ) = (180◦, 0◦).

In Section 2, we present the Hamiltonian analytical model with
elliptic expansions and explore the validity of the average model.
Also, we compare the results with direct N-body integrations. In
Section 3 we introduce the average semi-analytical model for the
three-body problem in the non-coplanar case, extending previous
results, and compare to numerically filtered integrations. Follow-
ing, in Section 4, we focus on the study of 3D equilibrium orbits,

particularly on the Lidov–Kozai (LK) resonance with the different
models. Finally, conclusions are presented in Section 5.

2 A NA LY T I C A L M O D E L

Classical expansions of the disturbing function do not converge
when the semi-major axis ratio is � 1, and consequently they are not
appropriate to model the coorbital resonance. Then, our intention is
to give an easy-to-handle Hamiltonian to describe the motion within
this resonance. We consider a system of two planets with masses
mi moving around a star with mass m0 with inclinations lower than
90◦. We do not include additional planets or dissipative forces. Each
planetary orbit is described by six orbital elements: semi-major axis
a, eccentricity e, inclination i, longitude of pericentre � , mean
longitude in orbit λ and longitude of the node �. Alternatively, we
can use the arguments of the pericentre ω = � − �, mean anomaly
M = λ − � and true anomaly f.

We write the Hamiltonian following Laskar & Robutel (1995),
using a canonical set of variables introduced by Poincaré with as-
trocentric positions of the planets ri and barycentric momentum
vectors pi . The pairs (ri , pi) form a canonical set of variables with
the Hamiltonian given by

H = H0 + U + T . (1)

Here, H0 is the Keplerian part (sum of the independent Keplerian
Hamiltonians), U is the direct part and T is the kinetic part of the
Hamiltonian, written in terms of the canonical variables (ri , pi) as

H0 = −
N∑

i=1

(
p2

i

2βi

− m0mi

||ri||
)

,

U = −G
N∑

i,j=1 i �=j

mimj

�ij

,

T =
N∑

i,j=1 i �=j

pi · pj

m0
, (2)

where G is the gravitational constant, β i = m0mi/(m0 + mi) and
�ij = ||ri − rj ||.

In the three-body problem, the barycentric momenta pi are related
to the heliocentric velocities ṙi by the following expressions:

p1 = m1

m0 + m1 + m2
[(m0 + m2)ṙ1 − m2ṙ2]

p2 = m2

m0 + m1 + m2
[(m0 + m1)ṙ2 − m1ṙ1] . (3)

For the planetary case mi � m0, then

p1 � m1ṙ1 + m1m2

m0
(ṙ1 − ṙ2)

p2 � m2ṙ2 + m1m2

m0
(ṙ2 − ṙ1) . (4)

The distance � between the planets is

�2 = r2
1 + r2

2 − 2r1r2 cos φ (5)

where φ is the angle between the vectors r1 and r2:

cos φ = r1 · r2

r1r2
. (6)

We then expand positions and velocities in eccentricities ej and
inclinations sj = sin (ij/2) obtaining an analytic expansion for the
Hamiltonian H. Also, we keep the coefficients up to the order
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968 C. A. Giuppone and A. M. Leiva

Figure 2. Top row: Phase space described by initial conditions integrated using H and H00 in the plane (u, σ ). Shown are Jupiter-like planets in quasi-circular
orbits (left-hand panel), Jupiter-like planets in eccentric orbits (middle panel) and Earth-like planets in eccentric orbits (right-hand panel). Bottom row: The
same initial conditions integrated with the N-body code for 400 yr. See text for details.

O(e2
j ),O(s2

j ) and O(mj ). Then, we integrate over the fast angle
λ1 + λ2, recovering the averaged analytical Hamiltonian H2 as

H2 = H00 + Gm1m2H22,

H00 = −β1μ1

2a1
− β2μ2

2a2
+ Gm1m2

(
cos σ√
a1a2

− 1

�̃

)
,

H22 = H2000 (e2
1 + e2

2) + H1100 e1e2

+ H0020 (s2
1 + s2

2 ) + H0011 s1s2, (7)

where

μi = G(m0 + mi),

σ = λ2 − λ1,

�̃ =
√

a2
1 + a2

2 − 2a1a2 cos(σ ). (8)

H00 has zero-order terms in eccentricities and inclinations, and H22

has order two terms, formally:

H2000 = − cos(σ )

2
√

a1a2

+ a1a2

8�̃5

[
4 cos(σ )(a2

1 + a2
2) + a1a2(5 cos(2σ ) − 13)

]
,

H1100 = cos(�� − 2σ )√
a1a2

+ γ

�̃5
,

γ = −a1a2(a2
1 + a2

2) cos(�� − 2σ ) − a2
1a

2
2

8

[cos(�� − 3σ ) − 26 cos(�� − σ ) + 9 cos(�� + σ )],

H0020 =
(

a1a2

�̃3
− 1√

a1a2

)
cos(σ ),

H0011 = 2

(
1√
a1a2

− a1a2

�̃3

)
cos(�2 − �1 − σ ). (9)

This expression for H2 is equivalent to the one reported in Robutel
& Pousse (2013), but avoiding the complex notation. We also want
to remark that, due to the d’Alembert rules, only even powers of
eccentricities and inclinations are present in H2.

The first-order average Hamiltonian, given by the expression H2,
is not valid in the region of QS because the fast angle (λ1 + λ2) has
a similar period to that of the resonant one (σ ).1

The integrable approximation H00, associated with the circular
and planar resonant problem, has been used by some authors to
study the motion inside the resonance because it should provide
qualitative information about the system dynamics. However, this
approximation is inadequate to describe the real dynamics of the
planets, even in some simple cases. For evidence, compare the in-
tegrations projected in the plane (u, σ ) using the analytic expansion
H with the results from the integrable approximation H00. Then,

u =
√

μ1μ2√
Gm0

β1β2

(β1 + β2)

(
√

a1 − √
a2)

(β1
√

μ1a1 + β2
√

μ2a2)
(10)

is the dimensionless non-canonical action-like variable.
In Fig. 2, we compare the evolution of the initial conditions in the

plane (σ , u) using the integrable approximation H00, the analytical
expansion H and N-body simulations. From left to right, the initial
conditions correspond to two Jupiter-like planets in coplanar quasi-
circular orbits (ei = 0.01) and in eccentric orbits (ei = 0.15), and
two Earth-like planets in eccentric orbits (ei = 0.15). The initial
conditions are set for σ = 2◦, 60◦, 180◦ and 300◦ for different u
values around zero. Consequently, the semi-major axes are

ai = a

(
1 + (−1)i+1 β1 + β2

βj

√
μ0

μj

u

)2

(11)

where the parameter a is the mean value around which the semi-
major axes oscillate, a = 1 (see Robutel & Pousse 2013). Also,

1 Recently, Robutel, Niederman & Pousse (2015) proposed a valid rigorous
average method for this region.
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Figure 3. Evolution of u for a coplanar HS pair of Jupiter planets with initial
conditions (u, σ ) = (−0.01, 180◦), using H00 (thick red line), H (green line)
and N-body integrations (blue dots). The inclusion of lower-order terms of
the eccentricities rapidly excites the system, causing the disruption of the
resonance (time �250 periods). The N-body simulation rapidly evidences
the chaotic nature of this configuration (time �5 periods).

the initial conditions for �� are set according to the nearest value
of the equilibrium solutions, namely σ � 0◦ → �� = 180◦, and
σ � ±60◦ → �� = ±60◦. The top row shows integrations given by
the analytical H (red dots) and H00 (green lines), while the bottom
row shows the same initial conditions, but integrated with a full
N-body code. Strictly speaking, our figures depict a projection of
the orbital elements on the phase-space portraits. To draw a formal
parallel between numerically computed phase-space portraits and
their analytic counterparts, a numerical averaging process must be
carried out appropriately over the rapidly varying angles. However,
for the purposes of this work, we shall loosely refer to these plots
as phase-space portraits, since their information content is almost
identical.

In the bottom row of Fig. 2, we can see that for Jupiter-like
planets, only small-amplitude TP orbits are stable. The remaining
conditions are highly unstable (seen as sparsely points) and neither
QS nor HS exist for more than a few orbits. Then, we set a threshold
to stop the integrations when the mutual distance between the bodies
is smaller than the sum of their mutual radius (assuming an Earth
or Jupiter radius, depending on the case) or if they exhibit chaotic
behaviour that changes their configuration. We also find transitions
from HS or TP orbits to QS orbits. Moreover, for quasi-circular
orbits (ei = 0.01), it is evident that the integrable approximation
(top row) H00 is not good to describe the real dynamics, and that
the inclusion of lower-order terms of eccentricities present in H
is enough to destabilize the system. Furthermore, only TP orbits
around L4 and L5 remain stable (top left-hand and middle panels
of Fig. 2). In the right-hand panel of Fig. 2, with moderate initial
eccentricities but planetary masses very small, mi/m0 = 3 × 10−6,
the dynamics predicted by the integrable approximation H00 are
similar to H; however, the QS region is only present in the N-body
integrations (bottom right-hand panel).

To understand what happens in the HS configuration, Fig. 3 shows
an example of the variation of u with time, integrated with different
models, for a Jupiter pair of planets. The inclusion of eccentric
terms is responsible for instability, even if the initial conditions are
quasi-circular orbits (ei = 0.01).

To study the HS configuration, we use the results from Robutel
& Pousse (2013), who estimated the size of the HS (U1) and TP

(U3) regions as:

U1 = 31/6

21/3

m1m2

m
1/3
0 (m1 + m2)5/3

U3 = 21/2

31/2

m1m2

m
1/2
0 (m1 + m2)3/2

U1

U3
= 32/3

25/6

(
m0

m1 + m2

)1/6

. (12)

Thus, the ratio U1/U3 give us the size of the HS region relative to
the TP region. As the masses decrease, the relative size increases,
but the absolute size is more reduced.

Laughlin & Chambers (2002) mentioned that the HS configura-
tion is not stable for planets more massive than 0.4MJ (∼100 M⊕)
for quasi-circular orbits (ei = 0.01). Recently, Leleu et al. (2015)
showed that the HS configuration is stable for systems with masses
lower than ∼30 M⊕ (ei = 0.05). Thus, setting the initial conditions
very close to the value of U3 (1.2U3), we numerically integrate
the three-body problem for different masses (m1 = m2) and ini-
tial eccentricities (e1 = e2), and calculate the mean exponential
growth factor of nearby orbits (Megno) 〈Y〉 to analyse their chaotic-
ity (Cincotta & Simó 2000). Fig. 4 shows the values of 〈Y〉 for
5 × 104 periods for coplanar orbits (J = 0◦) and initially mutually
inclined orbits (J = 15◦).2 In the figure, we can identify the allowed
maximum mass values as a function of their initial eccentricities
for HS planets. These values agree with other authors’ results re-
garding coplanar orbits. We run long-term numerical simulations
(10 Myr) for selected initial conditions (especially for ei > 0.3).
Those with initial conditions with 〈Y〉 � 5 did not survive, maybe
due to the long-term diffusion that destabilizes the coorbital sys-
tems on a time-scale that varies from 5 × 105 to 8 × 106 periods
(see Páez & Efthymiopoulos 2015). Generally, the inclined systems
(J = 15◦) can survive for more periods; however, they are strongly
chaotic, and those orbits with ei � 0.15 are frequently transition
orbits (HS–QS).

We have tested the second-order averaged Hamiltonian H2, set-
ting the initial conditions near equilibrium configurations with mod-
erate eccentricities (ej < 0.3) and mutual inclinations (J < 12◦).
Moreover, the mean initial Poincaré orbital elements were calcu-
lated using a low-pass far-infrared digital filter (Carpino, Milani
& Nobili 1987) to eliminate all periodic variations with a period
shorter than 3 yr. We selected initial conditions from Table 1 to
illustrate the orbital evolution, and the results are shown in Figs 5,
6 and 7. We can see a perfect agreement between the N-body inte-
gration and the H2 model for L4, AL4 and the HS configurations,
respectively. We resolve the Hamiltonian equations using five and
six degrees of freedom, i.e. equations (13) and (14), and the results
are the same.

We must remark that the integrations with the H2 model modify
the period of the orbital elements. As a consequence, the secular
frequencies sometimes depend on the initial values of e and i. Thus,
except for very small e and i, the secular frequencies are poorly
approximated, which is a problem for the study of the resonances
(inside the coorbital resonance), and especially for the LK reso-
nance. For the initial conditions chosen for Figs 5, 6 and 7, the
periods of the eccentricities are 20 per cent longer than those de-
termined with the N-body integrations. When we modify the initial

2 When both planets have masses, it is convenient to work with mutual
inclination J, defined as cos J = cos i1 cos i2 + sin i1sin i2 cos (�1 − �2)
(deduced from spherical trigonometry, see Moulton 1914, p. 408).
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970 C. A. Giuppone and A. M. Leiva

Figure 4. Stability of HS orbits in the plane of osculating initial conditions
(m1, ei) with (σ , �� ) = (60◦, 60◦). Initial values for the semi-major axis
are taken from equation (11), setting u = 1.2U3. The colour code indicates
the value of 〈Y〉. Strongly chaotic systems or systems that quit the coorbital
resonance before the integration stops are marked with white dots. All
coloured orbits survive for at least 105 periods. Long-term integrations show
that slow chaotic orbits (〈Y〉 � 5) survive from 5 × 105 to 8 × 106 periods,
while unstable conditions (in white) do not survive for more than 2 ×
103 periods. The initial conditions correspond to coplanar configurations
(top panel) and initial mutual inclinations J = 15◦ (bottom panel).

Table 1. Osculating Poincaré initial conditions near the stable periodic
solutions in the (σ , �� ) plane. All conditions have all angles in degrees,
m1 = 1MJ, m2 = 0.9MJ, a1 = 1.0038 au, and a2 = 0.995 784 au. HS has
u = 0.002 and masses mi = 12.5 M⊕.

σ �� e1 e2 i1 i2

L4 60 60 0.2 0.1 5 3
AL4 60 240 0.3 0.1 2 12
HS 240 240 0.05 0.05 1 3
QS 0 180 0.45 0.45 1 3

inclinations, the periods can be even four times the real ones. To
show this, in the top panel of Fig. 8 we show the secular periods cal-
culated with H2 and N-body filtered integrations varying the initial
eccentricities and two different initial mutual inclinations (J = 0◦

and J = 15◦), while in the bottom panel we set the initial eccen-
tricities at e1 = e2 = 0.01 and e1 = e2 = 0.15 for different mutual
inclinations. The secular frequencies almost do not depend on the
initial values of e in the N-body integrations. For near circular orbits
and planar orbits, the secular frequencies are approximated well by

Figure 5. Variation of orbital elements with time using the analytical H2

model compared with a N-body integration. Amplitudes coincide perfectly
and the frequencies were adjusted by hand (see text). Initial conditions from
Table 1 for the L4 case.

H2. When the eccentricity increases, the frequencies are poorly de-
termined by the H2 model. In contrast, when we fixed the initial
eccentricities at e = 0.01 for different mutual inclinations, neither
the N-body simulations nor the H2 model have constant secular
frequencies (bottom panel of Fig. 8).

3 SE M I - A NA LY T I C A L M O D E L

To extend the study of the system to the whole parameter space
(e.g. planetary masses, eccentricities, inclinations, etc.), it is useful
to construct a semi-analytical model for the coorbital motion. We
followed the ideas for the 3D models in other resonances (e.g.
Beaugé & Michtchenko 2003), extending the study of the coplanar
coorbital model developed in Giuppone et al. (2010).

Our model involves two main steps: first, a transformation to
adequate resonant variables; second, a numerical averaging of the
Hamiltonian with respect to short-period terms. Both procedures
are detailed below.
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Secular models for planets in coorbital 3D motion 971

Figure 6. Variation of orbital elements with time using the analytical H2

model compared with a N-body integration. Initial conditions from Table 1
correspond to the AL4 case.

We begin by introducing the usual mass-weighted Poincaré
canonical variables (e.g. Laskar 1990) for each planet with
mass mi:

λ1; L1 = β1
√

μ1a1

λ2; L2 = β2
√

μ2a2

p1 = −�1; P1 = L1 − G1 = L1

(
1 −

√
1 − e2

1

)

p2 = −�2; P2 = L2 − G2 = L2

(
1 −

√
1 − e2

2

)

q1 = −�1; Q1 = G1 − H1

q2 = −�2; Q2 = G2 − H2 (13)

where μi = G(m0 + mi), Gi = Li

√
1 − e2

i and Hi = Gi cos (ii).
For the initial conditions in the vicinity of coorbital motion, we

define the following set of resonant canonical variables (R1, R2, S1,
S2, T1, T2, σ , �� , s1, s2, t1, t2), where the new angles and actions

Figure 7. Variation of orbital elements with time using the analytical H2

model compared with a N-body integration. Initial conditions from Table 1
correspond to the HS case.

are

σ = λ2 − λ1; R1 = 1

2
(L2 − L1)

�� = p1 − p2; R2 = 1

2
(P1 − P2)

s1 = λ1 + λ2 + p1 + p2; S1 = 1

2
(L1 + L2)

s2 = −(p1 + p2) + (q1 + q2); S2 = 1

2
(L1 + L2 − P1 − P2)

t1 = q1 − q2; T1 = 1

2
(Q1 − Q2)

t2 = −(q1 + q2); T2 = 1

2
(H1 + H2) (14)

given that

a1 = (S1 − R1)2

μ1β1
2 and a2 = (S1 + R1)2

μ2β2
2 .
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972 C. A. Giuppone and A. M. Leiva

Figure 8. Secular period calculated using the H2 model (circles) compared
with the N-body integration (crosses). Initial osculating angles correspond to
the L4 configuration. Top panel: Thick lines have coplanar initial conditions,
while thin lines have initial value J = 15◦. Bottom panel: Thick lines have
quasi-circular initial conditions (ei = 0.01), while thin lines have initial
values ei = 0.15.

As we know, a generic argument ϕ of the disturbing function can
be written as

ϕ = j1λ1 + j2λ2 + j3�1 + j4�2 + j5�1 + j6�2, (15)

where jk are integers. In terms of the new angles, the same argument
may be written as

2ϕ = (j2 − j1)σ + (j4 − j3)�� + (j1 + j2)s1

+
(

4∑
k=1

jk

)
s2 + (j6 − j5)t1 +

(
6∑

k=1

jk

)
t2. (16)

Since d’Alembert’s relation provides a restriction for the jk co-
efficients,

∑
k jk = 0, t2 does not appear in ϕ (t2 is a cyclic

angle). As a consequence, the associated action T2 is a con-
stant of motion and we can reduce our problem by one degree

Figure 9. Time variation of eccentricities and inclinations using the semi-
analytical model H̄ compared with a filtered N-body integration for the QS
condition from Table 1.

of freedom. Hence, our election of canonical variables leads to
T2 = (1/2)(H1 + H2) = (1/2)AM (half the orbital angular mo-
mentum of the system).

Then, the Hamiltonian function can be expressed as H = H0 +
H1, where H0 corresponds to the two-body contribution:

H0 = −μ2
1β

3
1

2L2
1

− μ2
2β

3
2

2L2
2

. (17)

The second term, H1, is the disturbing function, which can be
written as:

H1 = −Gm1m2
1

�
+ T1, (18)

where � is the instantaneous distance between the two planets and
T1 is the indirect part of the potential energy of the gravitational
interaction.

Obviously, equations (13) and (14) achieve the same results, but
the latter has only five degrees of freedom, imposing the conserva-
tion of angular momentum.

The next step is to average the Hamiltonian over the fast angle
s1. This procedure can be performed numerically, allowing us to
evaluate the averaged Hamiltonian H̄ as:

H̄(R1, R2, S2, T1, σ,��, s2, t1; S1,AM) ≡ 1

4π

∫ 4π

0
H ds1.

(19)
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Secular models for planets in coorbital 3D motion 973

Figure 10. Relative error between the semi-analytical averaged Hamiltonian H̄ and the analytical expansion H2. We consider two Jupiter-like planets at 1 au
with ei = 0.01 (top row) and ei = 0.15 (bottom row). White regions are the most adequate to moderate the dynamics using the H2 model.

Figure 11. Phase space described by the semi-analytical model H̄ in the plane (u, σ ) for the same initial conditions as Fig. 2. Left: Jupiter pair of planets in
quasi-circular orbits (ei = 0.01). Middle: Jupiter pair of planets with moderate eccentricities (ei = 0.15). Right: Earth-like planets (mi = 3 × 10−6 M�) in
quasi-circular orbits.

In the averaged variables, S1 is a new integral of motion, which,
in analogy to other mean-motion resonances, we identify as the
scaling parameter, i.e. K.
H̄ constitutes a system with four degrees of freedom in the canon-

ical variables (R1, R2, S2, T1, σ , �� , s2, t1), parametrized by the
values of bothK andAM. Since the numerical integration depicted
in equation (19) is equivalent to a first-order average of the Hamil-
tonian function (e.g. Ferraz-Mello 2007), only those periodic terms
with j1 + j2 = 0 remain in H̄ (see equation 16).

We have compared the semi-analytical model averaged over the
fast angle with the filtered N-body integrations. The filter was made
using a low-pass far-infrared digital filter (Carpino et al. 1987) to
eliminate all periodic variations with a period shorter than 3 yr.
Needless to say, these results match better than those reproduced by
the second-order Hamiltonian H2, but are much slower. Since we
do not have restrictions for any configuration, H̄ is more adequate
in the whole coorbital resonance. As an example, in Fig. 9 we
show the results for an initial condition corresponding to a QS
orbit. No significant differences are appreciated for actions, angles,
frequencies or orbital elements.

Moreover, combining the information from equation (13) with
the expansions in equation (9), we easily identify S1, S2 and T2 as
constants of motion. Thus, we can deduce the coupling in the orbital

elements in the averaged models, namely

β1
√

μ1a1 + β2
√

μ2a2 = const,

L1e1
2 + L2e2

2 � const,

L1e1
2 cos(i1) + L2e2

2 cos(i2) � const. (20)

From the previous equations, the coupling between e and i present
in the LK resonance is not obvious (see Section 4).

We explore the parameter space (σ , �� ) and plot the relative
difference between the mean Hamiltonian H̄ and the average H2

model. The QS region3 shows more discrepancy, even considering
Neptune-like planets in quasi-circular orbits. Fig. 10 is a colour map
in the plane (σ , �� ) for two Jupiter-like planets with quasi-circular
initial conditions, ei = 0.01, and in eccentric orbits, ei = 0.15. Also,
we identify the initial mutual inclination J in each panel. Outside
the QS region, the relative difference between Hamiltonians does
not exceed 10−14, justifying the region of validity for the H2 model.
Furthermore, analytical models valid for the QS or ‘eccentric retro-
grade satellite orbits’, were developed by Mikkola et al. (2006) and

3 The region defined around (σ , �� ) = (0◦, 180◦). See Giuppone et al.
(2010) to identify the regions of motion within coorbital resonance.
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974 C. A. Giuppone and A. M. Leiva

Sidorenko et al. (2014), but are only valid for the RTBP, considering
small inclinations.

To illustrate the validity of this semi-analytical model, Fig. 11
shows the integrations for the same initial conditions as Fig. 2. Ob-
viously, if the mutual inclination J or eccentricities ei increases,
the analytical Hamiltonian H2 is more inexact. The semi-analytical
model eliminates the short periodic terms, making it easier to iden-
tify the different types of motion.

4 PHASE SPAC E IN THE 3D CASE

Our intention in this section is to find the different types of stable
orbits present in the inclined systems for 1:1 MMR.

Voyatzis, Antoniadou & Tsiganis (2014) studied systems that
migrate under the influence of dissipative forces that mimic the
effects of gas-driven (type II) migration. They demonstrated that
sometimes excitation of inclinations occurs during the initial stages
of planetary migration. In these cases, vertical critical orbits may
generate stable families of 3D periodic orbits, which drive the evo-
lution of the migrating planets to non-coplanar motion. Their work
focuses on the calculus of the vertical critical orbits of the 2:1 and
3:1 MMRs, for several values of the planetary mass ratio. In hier-
archical systems, the secular LK resonance provides conditions for
periodic orbits for inclined systems, and its centre of libration is
located at ω = ±90◦ (e.g. Lidov 1961; Kozai 1962; Kinoshita &
Nakai 2007). The secular Hamiltonian of RTBP (expanded up to
quadrupole order in the semi-major axis ratio a1/a2 and averaged
with respect to the fast periods λ1 and λ2) does not depend on �.
Hence, its conjugated action is a constant; consequently,√

G m0 a(1 − e2) cos(i) = const. (21)

Evidence of LK resonance for planetary systems was found in
the 2:1 MMR (Antoniadou & Voyatzis 2013) and compared with
the circular RTBP. As was pointed out by Libert & Tsiganis (2009),
the stability of some inclined exoplanetary systems may be associ-
ated with the LK resonance. Moreover, Morais & Namouni (2016)
showed that the LK resonance is present for retrograde orbits as well
as in prograde orbits and it plays a key role in coorbital resonance
capture for circular RTBP.

The LK resonance occurs in hierarchical planetary systems and
can be identified dynamically. The centre of this resonance oc-
curs when the mutual inclination between the bodies and the shape
of their orbits remain frozen in the integration. This occurs at
�� = ±90◦. Thus, we identify the centre of LK resonance through-
out different dynamical maps when the amplitude of oscillation for
e, J and ω tends to zero.

In our development, we average over the sum λ1 + λ2 instead of
λ1 and λ2, obtaining new conserved quantities. Nonetheless, at the
limit when the mass ratio goes to zero (m2/m1 → 0), we recovered
the results from RTBP, from conservation of angular momentum
(see equations 14 and 21).

Fig. 12 shows the variation of oscillation for e2 in the plane
(σ , �� ), setting two equal mass planets at low eccentric orbits
(e1 = e2 = 0.15) for several different values of the initial mutual
inclinations. In the left-hand panels, where a1 = a2, when the initial
mutual inclination is low, we can identify QS orbits at (0◦, 180◦),
L4 at (60◦, 60◦) and AL4 at (�70◦, �250◦). As the initial mutual
inclination increases, the regions of periodic orbits shrink. Only the
L4 condition is robust and it survives even for J = 36◦ (tiny dark
region in the bottom panel). We have realized that setting a1 = a2

does not give any further information about the possible existence of
HS or the LK resonance. Thus, following our results from Section 2,

Figure 12. Initial conditions integrated for 104 periods with e1 = e2 and
m1 = m2 = 4 M⊕. Initial conditions for the left column have a1 = a2 = 1 au,
while for the right column a1 = 1.004 838 and a2 = 0.995 17 au. The colour
scale represents the amplitude variation of e2. Each row corresponds to a
different initial J.
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Secular models for planets in coorbital 3D motion 975

Figure 13. Initial conditions integrated for 105 periods. Black squares correspond to amplitudes of ω2 < 10◦ and grey circles to 10◦ < ω2 < 20◦. For the
remaining initial conditions, ω2 circulates very slowly. The colour scale is proportional to the oscillation variation of J.

Figure 14. Phase space for a given value of AM and different initial mutual inclinations (J = 5◦, J = 10◦ and J = 18◦ from left to right). The first and
second rows correspond to the phase space using H2 and N-body integrations for 3 × 105 periods, respectively, in the plane (�� , e2), while the bottom row
corresponds to integrations on the plane (ω2, e2) with m1 = 3 × 10−6 M� and m2 = 3 × 10−9 M�. Each colour represents the evolution of a different initial
condition.

we set u = 1.2U3 (a1 = 1.004 838 and a2 = 0.995 17), showing
the results in the right column of Fig. 12. There, the HS region
appears at �� = 0◦, 180◦; however, it is not present for J = 0◦ at
(σ , �� ) = (�180◦, �180◦).4

4 Besides, it is present for J = 0◦ with a1 = a2. Its Megno value shows that
it is highly chaotic.

To optimize the identification of the region where the LK config-
uration appears, we study the plane (e1, e2) and initial conditions
with ω2 = 90◦, σ = 180◦, t1 = 180◦, �� = s1 = s2 = 0◦ and
u = 1.2U3. In this plane, we varied J for different mass ratios, rang-
ing from log (m2/m1) = −3 to 0. Fig. 13 summarizes the results
with a colour scale proportional to the variation of the mutual in-
clination J. We identify two regions of periodic orbits. One region
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976 C. A. Giuppone and A. M. Leiva

corresponds to e1 � e2, which is easier to identify for low mutual
inclination (see the first column, J = 5◦), and the other corresponds
to e1 � 0 and e2 > 0.3 depending on J and the mass ratio, which we
refer to as the LK region. For a very low mass ratio, m2/m1 � 0.001
(near RTBP conditions, top row in the figure), it is easy to find the
LK resonance in the range of mutual inclination 10◦ < J < 50◦.
This configuration is only found up to m2/m1 � 0.178 for very high
values of e2.

In Fig. 14, we plot both regions in the parameter space, setting
m2/m1 � 0.001. The top and middle rows show integrations with
the H2 model and the N-body code, respectively, in the HS region
on the plane (�� , e2). We used the same colours in all panels to
facilitate a comparison between them. Evidently, the H2 model is
limited to small (or even moderate) inclinations and eccentricities,
reproducing very well the parameter space with the oscillation cen-
tres slightly displaced. We numerically verified that the results are
indistinguishable when using m2 = 0 (RTBP) or m2/m1 = 10−3.
Although, the systems are well reproduced for moderate mutual in-
clinations, the interactions between the bodies are evident for some
orbits, showing chaotic motion in the N-body integrations.

On the other hand, in the bottom row of Fig. 14 we show the LK
region on the plane (ω2, e2) for the same values of initial J. The
results for LK at J = 18◦ agree with Namouni (1999) for the RTBP
inside the 1:1 MMR. The LK region is a mixture of dynamical
regimes and it was insightfully depicted numerically by Namouni
(1999). In Fig. 15, we show these different kinds of motion in the
plane (u, σ ) for J = 18◦ using the same colours and conditions
as in the bottom right-hand panel of Fig. 14. In the region of low
eccentricities, the motion is of HS type and ω2 circulates. Regions
at ω2 = 0◦ or 180◦, where ω2 librates with moderate values of e2,
are those corresponding to passing orbits. We can identify the LK
resonance at ω2 = ±90◦ with e2 � 0.4 (where ω2 librates). Near
to the LK resonances, there is a vase-like domain where transitions
between HS and QS orbits are present. However, the analytical H2

model was not able to reproduce the structure of the phase space.
Also, the phase space for J = 5◦ shows only transition orbits and
temporary HS–QS orbits.

To summarize the location of the LK resonance, we plot in the
plane (e2, J) the amplitude of oscillation of J, setting e1 = 0 for
different mass ratios (see Fig. 16). We can perfectly identify that the
LK resonance is present up to J � 50◦ and its appearance strongly
depends on the mass ratio. Thus, for example, Earth-like planets
can be in the centre of the LK resonance at low or high inclinations.
In Fig. 17, we plot only the points corresponding to the minimum

Figure 15. Examples of dynamical regimes present in Fig. 14. See text for
more details.

Figure 16. Location of LK resonance centre depending on mass ratio and
initial mutual inclination. The more massive planet has a circular orbit e1 = 0
with remaining orbital elements as in Fig. 13. The initial conditions were
integrated for 105 periods. Black squares correspond to an amplitude of
ω2 < 10◦ and grey circles to 10◦ < ω2 < 20◦. For the remaining initial
conditions, ω2 circulates very slowly.
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Figure 17. Location of the LK resonance centre depending on the mass
ratio and the initial mutual inclination. Error bars are proportional to the
oscillation of ω2.
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Secular models for planets in coorbital 3D motion 977

Figure 18. Phase space for a given value of AM and initial mutual inclination J = 5◦, J = 10◦ and J = 18◦ (from left to right). Top row: Two Jupiter-like
planets with a1 = a2 = 1 and σ = 60◦ (Lagrangian region). Bottom row: Two planets in the HS region, with mass 3 × 10−6 M�, σ = 180◦ and u = 1.2U3.
We plot with grey dots the N-body integrations and with colours the H2 model integrations.

Figure 19. Phase space for a given value of AM to show the LK resonance centre for J = 35◦ for three different mass ratios.

amplitude of oscillation of J for several mass ratios. When m2/m1 →
0.3, the LK resonance almost dissipates and the strong interactions
cause the amplitude of oscillation for ω2 to increase. However, they
are regular orbits, according to their Megno value 〈Y〉 (� 2.02).

Unlike in Fig. 14, the general problem (both planets with simi-
lar masses) is slightly different, and easier to analyse on the plane
(�� , e2). The averaged analytical H2 model works well even for
high inclinations and we are able to analyse the structure depicted
by numerical integrations. Fig. 18 shows the phase space for three
different mutual inclinations J and moderate eccentricities (initially,
a1 = a2 = 1 au, m1 = m2 = 3 × 10−6 M� and e1 = e2 = 0.2).
When the initial conditions have σ = 60◦ (top row), we can easily
identify two islands of stability corresponding to the L4 configura-
tion (at �� = 60◦) and the AL4 configuration (at �� � 240◦).
The L4 region is very well depicted by the model, even for J = 18◦,
but the AL4 region artificially shifts the centre for �� → 270◦;
besides the amplitude of e2 is well represented. This effect is due
to the limitations of expansions. For quasi-circular orbits, this shift
vanished.

In the bottom row of Fig. 18, when σ = 180◦, we set u = 1.2U3.
The oscillation centres are around �� � 0◦ and �� � 180◦.
Indeed, the central point with �� � 180◦ may correspond to the
Euler configuration L3 (J → 0◦), which is unstable in the RTBP.
When J increases, this family is the only one that survives, although
it seems chaotic in this plane. The other centre, around �� � 0◦,

corresponds to the family identified as unstable by Hadjidemetriou
et al. (2009) and Hadjidemetriou & Voyatzis (2011) in the coplanar
planetary problem, using Jupiter planets. For J � 20◦, the model
perfectly matches the N-body integration. After that, this region
becomes unstable. We plot results in the projected plane (σ , u) for
J = 10◦ and J = 18◦ to show that chaotic orbits in this region
correspond to HS–QS transition orbits (N-body integration with
grey points). However, the general behaviour of HS is captured by
the H2 model.

We tested a wide variety of systems with equal mass planets, from
two Earth-mass planets to two Jupiter-mass planets with mutual
inclinations as high as 60◦ in the region previously identified as
LK. We did not find evidence of LK resonance. For high mutual
inclinations, the systems are indeed strongly chaotic, and regular
motion is allowed very close to the exact location of L4 or AL4, and
the region around L4 is broader.

Also, it is important to remark that as the mutual inclination is
greater than 10◦, the systems exhibit chaotic behaviour if the initial
conditions do not correspond to the equilibrium solution (e1 = e2

for m1 = m2 = 1 M⊕). Nevertheless, we find some systems initially
located at high mutual inclinations that could be in coplanar orbits
after scattering.

The N-body integrations of Fig. 19 show examples of LK phase
portraits in the plane (ω2, e2) for J = 35◦ and different mass ratios,
with m1 = 1 M⊕ and e1 = 0.001. Note the centre of LK resonance
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978 C. A. Giuppone and A. M. Leiva

Figure 20. Analysis of periodic orbits L4, AL4, QS, L3 and U in the non-
coplanar case using as an indicator the variation of �e2. Results correspond
to N-body integrations for 106 periods. Top: Results considering two planets
with masses m1 = m2 = 4 M⊕ and ei = 0.15. The smooth variation of �e2

when we increase J is a good indicator of regular orbits (〈Y〉 � 2), although
almost all the orbits survive at least for 106 periods. Bottom: Analysis of
stability for inclined systems depending on their masses (see text for more
details).

located at ω2 = ±90◦. The low eccentric regime, e2 � 0.2, is usually
chaotic for this value of J. We use different colours to identify the
evolution of initial conditions integrated for 3 × 105 periods, while
the condition corresponding to ω2 = 90◦ was integrated over 107

periods. Is easy to see the importance of the forced oscillation
around the LK centre when m2/m1 → 0.2, justifying the error bars
in Fig. 17.

Finally, we analyse the 3D configurations for periodic orbits
mentioned in Fig. 1: L4, AL4, QS, L3 and U. To construct the
families of periodic orbits in the spatial case, we began from the
previously known results in the planar case and varied the mutual
inclinations J. For each family, we checked that σ̇ = ��̇ = 0,
setting the remaining angles equal to zero. We believe that this
is a natural extension from the periodic orbits in the equal-mass
planar case, although a more rigorous search should use the local
extrema of the semi-analytical Hamiltonian. The top panel in Fig. 20
shows the variation of the amplitude of oscillations for e2, �e2, for
systems with different initial mutual inclinations and integrated
over 106 periods. For the L4, AL4 and QS orbits, we set the initial
semi-major axes ai = 1 au, while for L3 and U, we set ai using
u = 1.2U3. We calculate the Megno value for every orbit 〈Y〉, but
we choose to show the �e2 indicator because it is easier to see the
smooth degradation of orbits as J increases; alternatively, �J is a
good indicator too. The most regular orbits are those corresponding
to L4 configurations (even for J � 60◦). AL4 orbits are regular

when J � 38◦ and QS orbits are regular up to J � 28◦. On the
other hand, U-type configurations remain stable and bounded for
the chosen planetary masses (4 M⊕) when J � 20◦, although the
evolution of orbital elements shows a slow diffusion of chaos. The
L3 orbits are also interesting. For J = 0, the orbits are unstable,
yielding close encounters between the planets; however, for J > 0,
the orbits become stable for at least 106 periods (〈Y〉 > 5). Even
for J � 60◦, the orbits oscillate around �� = 180◦, although when
0◦ < J < 20◦, their chaoticity is more bounded.

The bottom panel of Fig. 20 shows �e2, attained during the
integrations, for several mass values for a pair of planets. We choose
to show J = 5◦ to illustrate the general behaviour of the families. The
L4, AL4 and QS configurations are regular and robust configurations
in the range 0.3 M⊕ < mi < 1MJ. The U-type orbits seem to be
regular for masses mi � 10 M⊕, despite that long-term diffusion is
observed, and they remain in this configuration at least for 1 Gy.
In contrast, for systems with more massive planets (mi � 20 M⊕),
close encounters cause the expulsion of one planet (ai > 2 au)
in less than 104 periods. This same limit was observed for the
coplanar case. The L3 configurations are chaotic but bounded for
mi � 15 M⊕ and, also like U configurations, after this value of
masses the systems are quickly destroyed.

5 C O N C L U S I O N S

We studied the three-body problem in the context of coorbital res-
onance, considering coplanar and spatial configurations. We fol-
lowed several approaches: analytical (H), averaged analytical (H2,
equations 9) and semi-analytical (H̄, equation 19). We found appro-
priate angles and actions (equations 14) that evidence the conserved
quantities, verifying the results with N-body integrations. Some tests
were carried out in the limit of the RTBP.

We analysed the orbital evolution using the different models,
and identified the regular and chaotic regions in the plane (σ ,u)
for massive planets. In fact, the phase-space structure given by the
integrable approximationH00 is not adequate for any condition, and
our semi-analytical model is more accurate (see Fig. 2). We roughly
established a mass limit for the existence of HS orbits when working
with two massive planets depending on the eccentricities and mutual
inclinations (see Fig. 4).

The analytical H2 model described correctly the resonant motion
up to moderate eccentricities (ei ≤ 0.3) and initial mutual inclina-
tions (J ≤ 35◦), which always occurs outside the region associated
with QS motion. Using the H2 model, we speeded the orbital evolu-
tion by a factor of ∼50. However, depending on the particular prob-
lem, the secular frequencies are overestimated (even 10 times in our
examples). The three effects mentioned (Tides, YARKOVSKY and
YORP) are dissipative. Yarkovsky effect is induced by the thermal
emission forces on the asteroid’s surface (e.g. Bottke et al. 2002).
YORP effect alters the rotation rate of asteroids and the orientations
of their rotation axes (e.g. Golubov et al. 2016 and references there
in).

The analytical H2 model was accurate for the general three-
body problem with high mutual inclinations, while in the context of
RTBP, the semi-analytical model H̄ or N-body integrations should
be used.

We established the location of LK resonance within the 1:1 MMR.
The location of the LK resonance centre strongly depends on the
mass ratio and on the mutual inclination. The limit for the existence
starts from the case of RTBP until m2/m1 � 0.3, though planets
with comparable masses force the excitation of the orbits around
the equilibrium solution.
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Thus, when we considered an inclined pair of planetary systems,
the L4, AL4 and QS orbits are the most regular, and we discover some
interesting and very unexpected results for the U and L3 orbits. The
unstable U orbits identified by Hadjidemetriou et al. (2009) are, in
fact, regular and very stable orbits for a pair of Earth-like planets up
to mutual inclinations lower than 20◦. For inclined systems, unlike
the planar problem, the L3 orbits are very chaotic but bounded. We
checked for J � 30◦ that the orbits remain stable at least for 50 Myr.

The models developed here can be used for a systematic study
of the secular dynamics in the coorbital regime with the Solar sys-
tem planets, and also, with exoplanetary systems. Further work is
necessary to study the families of periodic orbits (and stationary
solutions). Moreover, further work is necessary to characterize the
change in the phase-space structure of 1:1 MMR and to give rigor-
ous definitions for the families of periodic orbits in the spatial case
and their relationship with the planar and also with the restricted
cases.
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