6,663 research outputs found

    The Meeting of the State Bar

    Get PDF

    Some Thoughts About the Judges

    Get PDF

    Dissenting Opinions

    Get PDF

    Accomplishments of the NASA Johnson Space Center portion of the soil moisture project in fiscal year 1981

    Get PDF
    The NASA/JSC ground scatterometer system was used in a row structure and row direction effects experiment to understand these effects on radar remote sensing of soil moisture. Also, a modification of the scatterometer system was begun and is continuing, to allow cross-polarization experiments to be conducted in fiscal years 1982 and 1983. Preprocessing of the 1978 agricultural soil moisture experiment (ASME) data was completed. Preparations for analysis of the ASME data is fiscal year 1982 were completed. A radar image simulation procedure developed by the University of Kansas is being improved. Profile soil moisture model outputs were compared quantitatively for the same soil and climate conditions. A new model was developed and tested to predict the soil moisture characteristic (water tension versus volumetric soil moisture content) from particle-size distribution and bulk density data. Relationships between surface-zone soil moisture, surface flux, and subsurface moisture conditions are being studied as well as the ways in which measured soil moisture (as obtained from remote sensing) can be used for agricultural applications

    Calibration of centre-of-mass energies at LEP 2 for a precise measurement of the W boson mass

    Full text link
    The determination of the centre-of-mass energies for all LEP 2 running is presented. Accurate knowledge of these energies is of primary importance to set the absolute energy scale for the measurement of the W boson mass. The beam energy between 80 and 104 GeV is derived from continuous measurements of the magnetic bending field by 16 NMR probes situated in a number of the LEP dipoles. The relationship between the fields measured by the probes and the beam energy is defined in the NMR model, which is calibrated against precise measurements of the average beam energy between 41 and 61 GeV made using the resonant depolarisation technique. The validity of the NMR model is verified by three independent methods: the flux-loop, which is sensitive to the bending field of all the dipoles of LEP; the spectrometer, which determines the energy through measurements of the deflection of the beam in a magnet of known integrated field; and an analysis of the variation of the synchrotron tune with the total RF voltage. To obtain the centre-of-mass energies, corrections are then applied to account for sources of bending field external to the dipoles, and variations in the local beam energy at each interaction point. The relative error on the centre-of-mass energy determination for the majority of LEP 2 running is 1.2 x 10^{-4}, which is sufficiently precise so as not to introduce a dominant uncertainty on the W mass measurement.Comment: 79 pages, 45 figures, submitted to EPJ

    High Resolution Hybrid Pixel Sensors for the e+e- TESLA Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of a future high energy e+e- linear collider, a Vertex Tracker, providing high resolution track reconstruction, is required. Hybrid Silicon pixel sensors are an attractive option, for the sensor technology, due to their read-out speed and radiation hardness, favoured in the high rate environment of the TESLA e+e- linear collider design but have been so far limited by the achievable single point space resolution. In this paper, a conceptual design of the TESLA Vertex Tracker, based on a novel layout of hybrid pixel sensors with interleaved cells to improve their spatial resolution, is presented.Comment: 12 pages, 5 figures, to appear in the Proceedings of the Vertex99 Workshop, Texel (The Netherlands), June 199

    Determination of the Accuracy of Wire Position Sensors

    Get PDF
    An energy spectrometer has been installed in the LEP accelerator to determine the beam energy with a relative accuracy of 10-4. A precisely calibrated bending magnet is flanked by 6 beam position monitors (BPM). The beam energy is determined by measuring the deflection angle of the LEP beams and the integrated bending field. An accuracy of less than 10-6 m on the beam position is necessary to reach the desired accuracy on the LEP beam energy. Capacitive wire positioning sensors are used to determine the relative mounting stability of each BPM and to calibrate the beam position monitors. Two-dimensional sensors are attached to each side of every BPM support and provide a position measurement with respect to two stretched wires mounted on either side of the LEP beam pipe. The fixing points of each wire are monitored by additional reference sensors. The position information is digitised via a multiplexed high accuracy digital voltmeter and read out continuously during LEP operations. Wire position sensor accuracy was tested in the laboratory with a laser interferometer, while relative accuracy tests are performed in the LEP environment. Systematic effects of synchrotron radiation on the wire position sensor performance were studied
    corecore