383 research outputs found

    Improving the quality of the industrial enterprise management based on the network-centric approach

    Full text link
    The article examines the network-centric approach to the industrial enterprise management to improve the ef ciency and effectiveness in the implementation of production plans and maximize responsiveness to customers. A network-centric management means the decentralized enterprise group management. A group means a set of enterprise divisions, which should solve by joint efforts a certain case that occurs in the production process. The network-centric management involves more delegation of authority to the lower elements of the enterprise’s organizational structure. The industrial enterprise is considered as a large complex system (production system) functioning and controlled amidst various types of uncertainty: information support uncertainty and goal uncertainty or multicriteria uncertainty. The information support uncertainty occurs because the complex system functioning always takes place in the context of incomplete and fuzzy information. Goal uncertainty or multicriteria uncertainty caused by a great number of goalsestablished for the production system. The network-centric management task de nition by the production system is formulated. The authors offer a mathematical model for optimal planning of consumers’ orders production with the participation of the main enterprise divisions. The methods of formalization of various types of uncertainty in production planning tasks are considered on the basis of the application of the fuzzy sets theory. An enterprise command center is offered as an effective tool for making management decisions by divisions. The article demonstrates that decentralized group management methods can improve the ef ciency and effectiveness of the implementation of production plans through the self-organization mechanisms of enterprise divisions.The work has been prepared with the financial support from the Russian Ministry of Education and Science (Contract No. 02.G25.31.0068 of 23.05.2013 as part of the measure to implement Decision of the Russian Government No. 218)

    Effect of local Coulomb interaction on Majorana corner modes: weak and strong correlation limits

    Full text link
    Here we present an analysis of the evolution of Majorana corner modes realizing in a higher-order topological superconductor (HOTSC) on a square lattice under the influence of local Coulomb repulsion. The HOTSC spectral properties were considered in two regimes: when the intensities of many-body interactions are either weak or strong. The weak regime was studied using the mean-field approximation with self-consistent solutions carried out both in the uniform case and taking into account of the boundary of the finite square-shaped system. It is shown that in the uniform case the topologically nontrivial phase on the phase diagram is widened by the Coulomb repulsion. The boundary effect, resulting in an inhomogeneous spatial distribution of the correlators, leads to the appearance of the crossover from the symmetric spin-independent solution to the spin-dependent one characterized by a spontaneously broken symmetry. In the former the corner states have energies that are determined by the overlap of the excitation wave functions localized at the different corners. In the latter the corner excitation energy is defined by the Coulomb repulsion intensity with a quadratic law. The crossover is a finite size effect, i.e. the larger the system the lesser the critical value of the Coulomb repulsion. In the strong repulsion regime we derive the effective HOTSC Hamiltonian in the atomic representation and found a rich variety of interactions induced by virtual processes between the lower and upper Hubbard subbands. It is shown that Majorana corner modes still can be realized in the limit of the infinite repulsion. Although the boundaries of the topologically nontrivial phase are strongly renormalized by Hubbard corrections.Comment: 13 pages, 6 figure

    Analysis of Structure Destroyed Metal after Diffusion Heat Treatment

    Get PDF
    It was accomplished research of the structure steel which carbonitriding and subsequent heat treatment was exposed for its cause's destruction to discover. For measure quality field of metal were used methods optical, appearing electronic microscopy and X-ray diffraction. Therefore one of the principal problems were research phase composition, grain and dislocation structure of a metal the gear teeth. Mechanism of rising hear cracks in the gear teeth on different stages her making and their trajectories of evolution were determined

    SURFRESIDE2: An ultrahigh vacuum system for the investigation of surface reaction routes of interstellar interest

    Get PDF
    A new ultrahigh vacuum experiment is described to study atom and radical addition reactions in interstellar ice analogues for astronomically relevant temperatures. The new setup – SURFace REaction SImulation DEvice (SURFRESIDE2) – allows a systematic investigation of solid state pathways resulting in the formation of molecules of astrophysical interest. The implementation of a double beam line makes it possible to expose deposited ice molecules to different atoms and/or radicals sequentially or at the same time. Special efforts are made to perform experiments under fully controlled laboratory conditions, including precise atom flux determinations, in order to characterize reaction channels quantitatively. In this way, we can compare and combine different surface reaction channels with the aim to unravel the solid state processes at play in space. Results are constrained in situ by means of a Fourier transform infrared spectrometer and a quadrupole mass spectrometer using reflection absorption infrared spectroscopy and temperature programmed desorption, respectively. The performance of the new setup is demonstrated on the example of carbon dioxide formation by comparing the efficiency through two different solid state channels (CO + OH → CO_2 + H and CO + O → CO_2) for which different addition products are needed. The potential of SURFRESIDE2 to study complex molecule formation, including nitrogen containing (prebiotic) compounds, is discussed

    Influence of multiple scattering on parametric X-Ray radiation excited by a beam of relativistic electrons in a single crystal

    Get PDF
    Parametric X-ray radiation generated by a beam of relativistic electrons in a single-crystal wafer is studied in the Bragg geometry under conditions of multiple electron scattering at target atoms. Expressions are obtained that describe the spectral-angular and angular radiation density under conditions of multiple electron scatterin

    The relationship between reaction to a moving object with concentrations of biogenic amines and kynematic-dynamic parameters of complex coordination movement in elite alpine skiers

    Get PDF
    Aim of the study: to identify mutual interaction between the reaction to a moving object with functional state of the central nervous system and kinematic-dynamic parameters of complex coordination movement.Materials and methods: 9 elite alpine skiers were participated in this study. Visual-motor coordination variables were assessed by computer complex for psychophysiological testing NS-Psychotest (Neurosoft, Russia). Dynamic parameters of complex coordination movement during counter movement jump were registered on the MuscleLab Force Plate (Ergotest Innovation A.S., Norway). Quantitation of hormones — adrenaline and noradrenaline as well as neurotransmitters — dopamine and serotonin in blood samples was performed using ultra-high performance liquid chromatograph combined with triple quadrupole mass analyzer LCMS-8060 (Shimadzu, Japan).Results: a significant negative relationship between the maximum output of motor efforts during counter movement jump, mean reaction time and the number of negative reactions recorded within visual-motor coordination testing was documented. A reliable positive relationship between excitation processes, jump power and jump time was established. Increases in noradrenaline and serotonin concentrations are positively associated with the number of accurate reactions, whereas dopamine level was positively correlated with jump altitude.Conclusion: the predominance of excitation over inhibition processes in the central nervous system had a positive effect on reducing the time spent on counter moving and increasing the maximum power of movement. As applied to alpine skiers we registered the following relationship: the higher the speeds of signal perception and muscle activation when solving a visual-motor task, the higher the power of working efforts, the shorter the time of the eccentric phase and total time spent on performing counter movement jump

    Infrared Spectra of Complex Organic Molecules in Astronomically Relevant Ice Mixtures: IV. Methylamine

    Full text link
    Context. In the near future, high spatial and spectral infrared (IR) data of star-forming regions obtained by the James Webb Space Telescope may reveal new solid-state features of various species, including more intriguing classes of chemical compounds. The identification of complex organic molecules (COMs) in the upcoming data will only be possible when laboratory IR ice spectra of these species under astronomically relevant conditions are available for comparison. For this purpose, systematic series of laboratory measurements are performed, providing high-resolution IR spectra of COMs. Here, spectra of pure methylamine (CH3NH2) and methylamine-containing ices are discussed. Aims. The work is aimed at characterizing the mid-IR (500-4000 cm-1, 20-2.5 μm) spectra of methylamine in pure and mixed ices to provide accurate spectroscopic data of vibrational bands that are most suited to trace this species in interstellar ices. Methods. Fourier transform infrared spectroscopy is used to record spectra of CH3NH2 in the pure form and mixed with H2O, CH4, and NH3, for temperatures ranging from 15 to 160 K. The IR spectra in combination with HeNe laser (632.8 nm) interference data of pure CH3NH2 ice was used to derive the IR band strengths of methylamine in pure and mixed ices. Results. The refractive index of amorphous methylamine ice at 15 K was determined as being 1.30 ± 0.01. Accurate spectroscopic information and band strength values are systematically presented for a large set of methylamine-containing ices and different temperatures. Selected bands are characterized and their use as methylamine tracers is discussed. The selected bands include the following: the CH3 antisymmetric stretch band at 2881.3 cm-1 (3.471 μm), the CH3 symmetric stretch band at 2791.9 cm-1 (3.582 μm), the CH3 antisymmetric deformation bands, at 1455.0 and 1478.6 cm-1 (6.873 and 6.761 μm), the CH3 symmetric deformation band at 1420.3 cm-1 (7.042 μm), and the CH3 rock at 1159.2 cm-1 (8.621 μm). Using the laboratory data recorded in this work and ground-based spectra of ices toward YSOs (Young Stellar Objects), upper-limits for the methylamine ice abundances are derived. In some of these YSOs, the methylamine abundance is less than 4% relative to H2O. © ESO 2021.This work has been made possible through financial support by NOVA, the Netherlands Research School for Astronomy. We thank Dr. Jiao He for the helpful discussions about refractive index measurements and Dr. Will Rocha, Nicolas Suas-David, and Dr. Melissa McClure for helpful discussions. G.F. also acknowledges financial support from the Russian Ministry of Science and Higher Education via the State Assignment Contract FEUZ-2020-0038

    Universality of pseudogap and emergent order in lightly doped Mott insulators

    Get PDF
    It is widely believed that high-temperature superconductivity in the cuprates emerges from doped Mott insulators. The physics of the parent state seems deceivingly simple: The hopping of the electrons from site to site is prohibited because their on-site Coulomb repulsion U is larger than the kinetic energy gain t. When doping these materials by inserting a small percentage of extra carriers, the electrons become mobile but the strong correlations from the Mott state are thought to survive; inhomogeneous electronic order, a mysterious pseudogap and, eventually, superconductivity appear. How the insertion of dopant atoms drives this evolution is not known, nor whether these phenomena are mere distractions specific to hole-doped cuprates or represent the genuine physics of doped Mott insulators. Here, we visualize the evolution of the electronic states of (Sr1-xLax)2IrO4, which is an effective spin-1/2 Mott insulator like the cuprates, but is chemically radically different. Using spectroscopic-imaging STM, we find that for doping concentration of x=5%, an inhomogeneous, phase separated state emerges, with the nucleation of pseudogap puddles around clusters of dopant atoms. Within these puddles, we observe the same glassy electronic order that is so iconic for the underdoped cuprates. Further, we illuminate the genesis of this state using the unique possibility to localize dopant atoms on topographs in these samples. At low doping, we find evidence for much deeper trapping of carriers compared to the cuprates. This leads to fully gapped spectra with the chemical potential at mid-gap, which abruptly collapse at a threshold of around 4%. Our results clarify the melting of the Mott state, and establish phase separation and electronic order as generic features of doped Mott insulators.Comment: This version contains the supplementary information and small updates on figures and tex

    Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Get PDF
    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as \sim10810910^{-8}-10^{-9} nH_\text{H}, contradicts the generally accepted idea that at 1010 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO-H2_2CO-CH3_3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2_2CO and CH3_3OH. We find that for temperatures in the range of 1010 to 1414 K, an upper limit of 0.24±0.020.24\pm 0.02 for the overall elemental carbon loss upon CO conversion into CH3_3OH. This corresponds with an effective reaction desorption fraction of \leq0.070.07 per hydrogenation step, or \leq0.020.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.Comment: 9 pages, 7 figure
    corecore