1,036 research outputs found

    Conformal Field Theories in Fractional Dimensions

    Get PDF
    We study the conformal bootstrap in fractional space-time dimensions, obtaining rigorous bounds on operator dimensions. Our results show strong evidence that there is a family of unitary CFTs connecting the 2D Ising model, the 3D Ising model, and the free scalar theory in 4D. We give numerical predictions for the leading operator dimensions and central charge in this family at different values of D and compare these to calculations of phi^4 theory in the epsilon-expansion.Comment: 11 pages, 4 figures - references updated - one affiliation modifie

    A discrete Laplace-Beltrami operator for simplicial surfaces

    Get PDF
    We define a discrete Laplace-Beltrami operator for simplicial surfaces. It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called ``cotan formula'') except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new definitions of discrete harmonic functions, discrete mean curvature, and discrete minimal surfaces. The definition of the discrete Laplace-Beltrami operator depends on the existence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the existence is known, we prove the uniqueness. Using Rippa's Theorem we show that, as claimed, Musin's harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces.Comment: 18 pages, 6 vector graphics figures. v2: Section 2 on Delaunay triangulations of piecewise flat surfaces revised and expanded. References added. Some minor changes, typos corrected. v3: fixed inaccuracies in discussion of flip algorithm, corrected attributions, added references, some minor revision to improve expositio

    Functional Maps Representation on Product Manifolds

    Get PDF
    We consider the tasks of representing, analyzing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace--Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.Comment: Accepted to Computer Graphics Foru

    Discrete complex analysis on planar quad-graphs

    Get PDF
    We develop a linear theory of discrete complex analysis on general quad-graphs, continuing and extending previous work of Duffin, Mercat, Kenyon, Chelkak and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach based on the medial graph yields more instructive proofs of discrete analogs of several classical theorems and even new results. We provide discrete counterparts of fundamental concepts in complex analysis such as holomorphic functions, derivatives, the Laplacian, and exterior calculus. Also, we discuss discrete versions of important basic theorems such as Green's identities and Cauchy's integral formulae. For the first time, we discretize Green's first identity and Cauchy's integral formula for the derivative of a holomorphic function. In this paper, we focus on planar quad-graphs, but we would like to mention that many notions and theorems can be adapted to discrete Riemann surfaces in a straightforward way. In the case of planar parallelogram-graphs with bounded interior angles and bounded ratio of side lengths, we construct a discrete Green's function and discrete Cauchy's kernels with asymptotics comparable to the smooth case. Further restricting to the integer lattice of a two-dimensional skew coordinate system yields appropriate discrete Cauchy's integral formulae for higher order derivatives.Comment: 49 pages, 8 figure

    Simplicity of extremal eigenvalues of the Klein-Gordon equation

    Full text link
    We consider the spectral problem associated with the Klein-Gordon equation for unbounded electric potentials. If the spectrum of this problem is contained in two disjoint real intervals and the two inner boundary points are eigenvalues, we show that these extremal eigenvalues are simple and possess strictly positive eigenfunctions. Examples of electric potentials satisfying these assumptions are given

    On Equivalence of Duffin-Kemmer-Petiau and Klein-Gordon Equations

    Get PDF
    A strict proof of equivalence between Duffin-Kemmer-Petiau (DKP) and Klein-Gordon (KG) theories is presented for physical S-matrix elements in the case of charged scalar particles interacting in minimal way with an external or quantized electromagnetic field. First, Hamiltonian canonical approach to DKP theory is developed in both component and matrix form. The theory is then quantized through the construction of the generating functional for Green functions (GF) and the physical matrix elements of S-matrix are proved to be relativistic invariants. The equivalence between both theories is then proved using the connection between GF and the elements of S-matrix, including the case of only many photons states, and for more general conditions - so called reduction formulas of Lehmann, Symanzik, Zimmermann.Comment: 23 pages, no figures, requires macro tcilate

    Equation of the field lines of an axisymmetric multipole with a source surface

    Get PDF
    Optical spectropolarimeters can be used to produce maps of the surface magnetic fields of stars and hence to determine how stellar magnetic fields vary with stellar mass, rotation rate, and evolutionary stage. In particular, we now can map the surface magnetic fields of forming solar-like stars, which are still contracting under gravity and are surrounded by a disk of gas and dust. Their large scale magnetic fields are almost dipolar on some stars, and there is evidence for many higher order multipole field components on other stars. The availability of new data has renewed interest in incorporating multipolar magnetic fields into models of stellar magnetospheres. I describe the basic properties of axial multipoles of arbitrary degree ℓ and derive the equation of the field lines in spherical coordinates. The spherical magnetic field components that describe the global stellar field topology are obtained analytically assuming that currents can be neglected in the region exterior to the star, and interior to some fixed spherical equipotential surface. The field components follow from the solution of Laplace’s equation for the magnetostatic potential

    Comment on ``the Klein-Gordon Oscillator''

    Get PDF
    The different ways of description of the S=0S=0 particle with oscillator-like interaction are considered. The results are in conformity with the previous paper of S. Bruce and P. Minning.Comment: LaTeX file, 5p

    Association Between p.Leu54Met Polymorphism at the Paraoxonase-1 Gene and Plantar Fascia Thickness in Young Subjects With Type 1 Diabetes

    Get PDF
    OBJECTIVE— In type 1 diabetes, plantar fascia, a collagen-rich tissue, is susceptible to glycation and oxidation. Paraoxonase-1 (PON1) is an HDL-bound antioxidant enzyme. PON1 polymorphisms have been associated with susceptibility to macro- and microvascular complications. We investigated the relationship between plantar fascia thickness (PFT) and PON1 gene variants, p.Leu54Met, p.Gln192Arg, and c.-107C>T, in type 1 diabetes

    Solving the 3D Ising Model with the Conformal Bootstrap

    Get PDF
    We study the constraints of crossing symmetry and unitarity in general 3D Conformal Field Theories. In doing so we derive new results for conformal blocks appearing in four-point functions of scalars and present an efficient method for their computation in arbitrary space-time dimension. Comparing the resulting bounds on operator dimensions and OPE coefficients in 3D to known results, we find that the 3D Ising model lies at a corner point on the boundary of the allowed parameter space. We also derive general upper bounds on the dimensions of higher spin operators, relevant in the context of theories with weakly broken higher spin symmetries.Comment: 32 pages, 11 figures; v2: refs added, small changes in Section 5.3, Fig. 7 replaced; v3: ref added, fits redone in Section 5.
    • 

    corecore