1,387 research outputs found

    High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures

    Get PDF
    We present high field magneto-transport data from a range of 30nm wide InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between 1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess of 6 m2V-1s-1. It is found that the Landau level broadening decreases with carrier density and beating patterns are observed in the magnetoresistance with non-zero node amplitudes in samples with the narrowest broadening despite the presence of a large g-factor. The beating is attributed to Rashba splitting phenomenon and Rashba coupling parameters are extracted from the difference in spin populations for a range of samples and gate biases. The influence of Landau level broadening and spin-dependent scattering rates on the observation of beating in the Shubnikov-de Haas oscillations is investigated by simulations of the magnetoconductance. Data with non-zero beat node amplitudes are accompanied by asymmetric peaks in the Fourier transform, which are successfully reproduced by introducing a spin-dependent broadening in the simulations. It is found that the low-energy (majority) spin up state suffers more scattering than the high-energy (minority) spin down state and that the absence of beating patterns in the majority of (lower density) samples can be attributed to the same effect when the magnitude of the level broadening is large

    Tentative Evidence for Relativistic Electrons Generated by the Jet of the Young Sun-like Star DG Tau

    Full text link
    Synchrotron emission has recently been detected in the jet of a massive protostar, providing further evidence that certain jet formation characteristics for young stars are similar to those found for highly relativistic jets from AGN. We present data at 325 and 610 MHz taken with the GMRT of the young, low-mass star DG Tau, an analog of the Sun soon after its birth. This is the first investigation of a low-mass YSO at at such low frequencies. We detect emission with a synchrotron spectral index in the proximity of the DG Tau jet and interpret this emission as a prominent bow shock associated with this outflow. This result provides tentative evidence for the acceleration of particles to relativistic energies due to the shock impact of this otherwise very low-power jet against the ambient medium. We calculate the equipartition magnetic field strength (0.11 mG) and particle energy (4x10^40 erg), which are the minimum requirements to account for the synchrotron emission of the DG Tau bow shock. These results suggest the possibility of low energy cosmic rays being generated by young Sun-like stars.Comment: 19 pages, 2 figures, accepted for publication in ApJ Letter

    On the ubiquity of molecular anions in the dense interstellar medium

    Get PDF
    Results are presented from a survey for molecular anions in seven nearby Galactic star-forming cores and molecular clouds. The hydrocarbon anion C6H- is detected in all seven target sources, including four sources where no anions have been previously detected: L1172, L1389, L1495B and TMC-1C. The C6H-/C6H column density ratio is greater than about 1.0% in every source, with a mean value of 3.0% (and standard deviation 0.92%). Combined with previous detections, our results show that anions are ubiquitous in dense clouds wherever C6H is present. The C6H-/C6H ratio is found to show a positive correlation with molecular hydrogen number density, and with the apparent age of the cloud. We also report the first detection of C4H- in TMC-1 (at 4.8-sigma confidence), and derive an anion-to-neutral ratio C4H-/C4H = (1.2 +- 0.4) x 10^-5 (= 0.0012 +- 0.0004%). Such a low value compared with C6H- highlights the need for a revised radiative electron attachment rate for C4H. Chemical model calculations show that the observed C4H- could be produced as a result of reactions of oxygen atoms with C5H- and C6H-

    Pathway map development for medical device event reporting in operating theatres: a human factors approach to improving the existing system

    Get PDF
    OBJECTIVES: This study aimed to develop the actual pathway to reporting and information transfer in operating theatres in relation to medical technology malfunction/failure. This with the aim of understanding the differences with the pathway published by NHS Improvement and identification of points for improvement. DESIGN: This is a qualitative study involving stakeholder interviews with doctors, nurses, manufacturers, medical device safety officer and Medicines and Healthcare products Regulatory Agency. SETTING: Data were collected on reporting pathway used in operating theatres. Clinical staff who took part worked in different trusts throughout UK while manufacturers provided devices in UK and EU/USA. PARTICIPANTS: Semistructured interviews were completed with 15 clinicians and 13 manufacturers. Surveys were completed by 38 clinicians and 5 manufacturers. Recognised methods of pathway development were used. The Lean Six Sigma principles adapted to healthcare were used to develop suggestions for improvement. MAIN OUTCOME MEASURES: To identify the differences between the set pathway to reporting and information transfer to what is occurring on a day-to-day basis as reported by staff. Identify points in the pathway where improvements could be applied. RESULTS: The developed pathway demonstrated great complexity of the current reporting system for medical devices. It identified numerous areas that give rise to problems and multiple biases in decision making. This highlighted the core issues leading to under-reporting and lack of knowledge on device performance and patient risk. Suggestions for improvement were deduced based on end user requirements and identified problems. CONCLUSIONS: This study has provided a detailed understanding of the key problem areas that exist within the current reporting system for medical devices and technology. The developed pathway sets to address the key problems to improve reporting outcomes. The identification of pathway differences between 'work as done' and 'work as imagined' can lead to development of quality improvements that could be systematically applied

    Shoulder posture and median nerve sliding

    Get PDF
    Background: Patients with upper limb pain often have a slumped sitting position and poorshoulder posture. Pain could be due to poor posture causing mechanical changes (stretch; localpressure) that in turn affect the function of major limb nerves (e.g. median nerve). This studyexamines (1) whether the individual components of slumped sitting (forward head position, trunkflexion and shoulder protraction) cause median nerve stretch and (2) whether shoulderprotraction restricts normal nerve movements.Methods: Longitudinal nerve movement was measured using frame-by-frame cross-correlationanalysis from high frequency ultrasound images during individual components of slumped sitting.The effects of protraction on nerve movement through the shoulder region were investigated byexamining nerve movement in the arm in response to contralateral neck side flexion.Results: Neither moving the head forward or trunk flexion caused significant movement of themedian nerve. In contrast, 4.3 mm of movement, adding 0.7% strain, occurred in the forearm duringshoulder protraction. A delay in movement at the start of protraction and straightening of thenerve trunk provided evidence of unloading with the shoulder flexed and elbow extended and thescapulothoracic joint in neutral. There was a 60% reduction in nerve movement in the arm duringcontralateral neck side flexion when the shoulder was protracted compared to scapulothoracicneutral.Conclusion: Slumped sitting is unlikely to increase nerve strain sufficient to cause changes tonerve function. However, shoulder protraction may place the median nerve at risk of injury, sincenerve movement is reduced through the shoulder region when the shoulder is protracted andother joints are moved. Both altered nerve dynamics in response to moving other joints and localchanges to blood supply may adversely affect nerve function and increase the risk of developingupper quadrant pain

    Review of eating disorders and oxytocin receptor polymorphisms.

    Get PDF
    BACKGROUND AND AIMS: Oxytocin, a nine amino acid peptide synthesised in the hypothalamus, has been widely recognised for its role in anxiolysis, bonding, sociality, and appetite. It binds to the oxytocin receptor (OXTR)-a G-protein coupled receptor-that is stimulated by the actions of oestrogen both peripherally and centrally. Studies have implicated OXTR genotypes in conferring either a risk or protective effect in autism, schizophrenia, and eating disorders (ED). There are numerous DNA variations of this receptor, with the most common DNA variation being in the form of the single nucleotide polymorphisms (SNPs). Two OXTR SNPs have been most studied in relation to ED: rs53576 and rs2254298. Each SNP has the same allelic variant that produces genotypes AA, AG, and GG. In this critical review we will evaluate the putative role of rs53576 and rs2254298 SNPs in ED. Additionally, this narrative review will consider the role of gene-environment interactions in the development of ED pathology. FINDINGS: The OXTR SNPs rs53576 and rs2254298 show independent associations between the A allele and restrictive eating behaviours. Conversely, the G allele of the OXTR rs53576 SNP is associated with binging behaviours, findings that were also evident in neuroanatomy. One study found the A allele of both OXTR SNPs to confer risk for more severe ED symptomatology while the G allele conferred some protective effect. An interaction between poor maternal care and rs2254298 AG/AA genotype conferred increased risk for binge eating and purging in women. CONCLUSIONS: Individual OXTR SNP are unlikely in themselves to explain complex eating disorders but may affect the expression of and/or effectiveness of the OXTR. A growing body of G x E work is indicating that rs53576G homozygosity becomes disadvantageous for later mental health under early adverse conditions but further research to extend these findings to eating pathology is needed. The GWAS approach would benefit this area of knowledge

    A Surface-Gated InSb Quantum Well Single Electron Transistor

    Full text link
    Single electron charging effects in a surface-gated InSb/AlInSb QW structure are reported. This material, due to its large g-factor and light effective mass, offers considerable advantages over more commonly used materials, such as GaAs, for quantum information processing devices. However, differences in material and device technology result in significant processing challenges. Simple Coulomb blockade and quantised confinement models are considered to explain the observation of conductance oscillations in these structures. The charging energy is found to be comparable with the energy spectrum for single particle states

    Integrating Experiment and Theory to Understand TCR-pMHC Dynamics

    Get PDF
    The conformational dynamism of proteins is well established. Rather than having a single structure, proteins are more accurately described as a conformational ensemble that exists across a rugged energy landscape, where different conformational sub-states interconvert. The interaction between αβ T cell receptors (TCR) and cognate peptide-MHC (pMHC) is no exception, and is a dynamic process that involves substantial conformational change. This review focuses on technological advances that have begun to establish the role of conformational dynamics and dynamic allostery in TCR recognition of the pMHC and the early stages of signaling. We discuss how the marriage of molecular dynamics (MD) simulations with experimental techniques provides us with new ways to dissect and interpret the process of TCR ligation. Notably, application of simulation techniques lags behind other fields, but is predicted to make substantial contributions. Finally, we highlight integrated approaches that are being used to shed light on some of the key outstanding questions in the early events leading to TCR signaling

    New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing

    Full text link
    We investigate a four-state system interacting with long and short laser pulses in a weak probe beam approximation. We show that when all lasers are tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM) field is strongly absorbed. The part which is not absorbed has the exact intensity required to destructively interfere with the excitation pathway involved in producing the FWM state. We show that with this three-photon destructive interference, the conversion efficiency can still be as high as 25%. Contrary to common belief,our calculation shows that this process, where an ideal one-photon electromagnetically induced transparency is established, is not most suitable for high efficiency conversion. With appropriate phase-matching and propagation distance, and when the three-photon destructive interference does not occur, we show that the photon flux conversion efficiency is independent of probe intensity and can be close to 100%. In addition, we show clearly that the conversion efficiency is not determined by the maximum atomic coherence between two lower excited states, as commonly believed. It is the combination of phase-matching and constructive interference involving the two terms arising in producing the mixing wave that is the key element for the optimized FWM generation. Indeed, in this scheme no appreciable excited state is produced, so that the atomic coherence between states |0> and |2> is always very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure
    corecore