
REVIEW
published: 07 December 2018

doi: 10.3389/fimmu.2018.02898

Frontiers in Immunology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 2898

Edited by:

Jorge Bernardino De La Serna,

United Kingdom Research and

Innovation, United Kingdom

Reviewed by:

Rainer A. Böckmann,

Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany

Brian M. Baker,

University of Notre Dame,

United States

*Correspondence:

Ashley M. Buckle

ashley.buckle@monash.edu

Natalie A. Borg

natalie.borg@monash.edu

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 19 September 2018

Accepted: 26 November 2018

Published: 07 December 2018

Citation:

Buckle AM and Borg NA (2018)

Integrating Experiment and Theory to

Understand TCR-pMHC Dynamics.

Front. Immunol. 9:2898.

doi: 10.3389/fimmu.2018.02898

Integrating Experiment and Theory to
Understand TCR-pMHC Dynamics
Ashley M. Buckle* and Natalie A. Borg*

Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular

Biology, Monash University, Clayton, VIC, Australia

The conformational dynamism of proteins is well established. Rather than having

a single structure, proteins are more accurately described as a conformational

ensemble that exists across a rugged energy landscape, where different conformational

sub-states interconvert. The interaction between αβ T cell receptors (TCR) and cognate

peptide-MHC (pMHC) is no exception, and is a dynamic process that involves substantial

conformational change. This review focuses on technological advances that have begun

to establish the role of conformational dynamics and dynamic allostery in TCR recognition

of the pMHC and the early stages of signaling. We discuss how the marriage of molecular

dynamics (MD) simulations with experimental techniques provides us with new ways

to dissect and interpret the process of TCR ligation. Notably, application of simulation

techniques lags behind other fields, but is predicted to make substantial contributions.

Finally, we highlight integrated approaches that are being used to shed light on some of

the key outstanding questions in the early events leading to TCR signaling.
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INTRODUCTION

Self or foreign intracellular peptides are presented on the surface of antigen presenting cells
(APC) by major histocompatibility complex (MHC) class I molecules. These peptide-bound MHC
(pMHC) molecules undergo surveillance by CD8+ cytotoxic T lymphocytes (CTLs) via the αβ T
cell receptors (TCR) that are expressed on their surface. TCR engagement of the pMHC leads to the
formation of an immune synapse that is central to T cell activation (Figure 1A). The outcome of T
cell engagement with the pMHC influences T cell fate, playing a role in the defense against infection
and cancer, but on the flip side, allergic reactions, autoimmune disease, transplant rejection, and
drug hypersensitivity. Despite the importance of T cell activation, we have a poor understanding
of how the TCR-pMHC initiates an intracellular signal and this impedes our ability to manipulate
the T cell response to target infection and cancer. What is clear however is that there is enormous
complexity to the overall response and dissecting it requires the integration of a diverse suite of
both experimental and computational tools and techniques.

Due to the relatively small size of the TCR-pMHC, X-ray crystallography has led the way in
the structural determination of the extracellular domains of pMHC and TCR alone or in complex
with one another at near-atomic resolution. These studies detail the conformation of the peptide,
its interactions with MHC as well as the TCR and structural changes the MHC and/or peptide
undergoes upon TCR binding. It was long-anticipated that these accrued X-ray structures would
also reveal how the information at the pMHC interface is communicated from the variable domains
to the membrane proximal constant domains and via the CD3 subunits necessary for signal
transduction. A clear mechanism however has not been revealed, exemplified by instances where
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FIGURE 1 | (A) Stylized view of the pMHC-TCR and core components

required for T cell signaling. (B) Components of the pMHC-TCR complex for

which structures have been determined in combination with one another. The

complex depicts peptide-bound HLA-A*02 in complex with CD8 and the B7

TCR (derived by superimposing components of PDB ID’s 1AKJ and 1BD2. (C)

Portions of the CD3εγ (ectodomain; PDB ID 1SY6), CD3εδ (ectodomain; PDB

1XIW) and CD3ζζ (TM domains; PDB ID 2MAC) signaling components have

been structurally determined, but not in complex with the TCR. Black lines

represent regions of conformational flexibility. TCR α and β chain shown in dark

and light blue, respectively. MHC class I heavy and light (β2-microglobulin)

chain shown in light and dark green, respectively. Peptide shown in red.

CD8αα shown in orange.

single amino acid changes in a peptide produce near-identical
structural snapshots but different T cell outcomes (1–3). This
indicates additional factors, concealed by X-ray crystallographic
snapshots, are at play.

There is emerging evidence that conformational dynamics and
dynamic allostery influences T cell recognition and activation
(4–6), yet until recently, this has been overlooked in our effort
to understand the structural basis of TCR recognition of the
pMHC. The importance of conformational dynamics at the
immune synapse has been the subject of excellent recent reviews
[see, for example (7–12)]. In this review, we instead focus on
relevant methodologies (highlighted in Figure 2), and specifically
recent advances in computational, structural and biophysical
techniques, and how they can be integrated to provide powerful
insights into the key early stages of the TCR-pMHC interaction.
Finally, we highlight integrated approaches that are being used to
shed light on some of the key outstanding questions in the early
events leading to TCR signaling.

X-RAY CRYSTALLOGRAPHY: PIONEERING
ATOMIC RESOLUTION DETAILS

Typically, the structural flexibility of a TCR-pMHC system
is solely interpreted from a single set of coordinates derived
from X-ray diffraction data. In this case flexibility is merely
inferred mainly by comparing structural differences between
TCR-pMHC and their unbound constituents (13, 14) and the
consideration of atomic temperature (B) factors. B-factors can
be used to estimate atomic displacements that arise from static

and dynamic disorder (alternative conformations in the crystal
lattice, and atomic fluctuations in the crystal, respectively). By
comparing identical molecules in different crystal lattices, the
influence of crystal packing on protein structure can be analyzed
(15–17). Indeed, crystal packing can select radically different
conformations from a heterogeneous ensemble, giving clues to
conformational dynamics (16). For example, structural variation
of HLA-B∗35:08-LPEP with SB27 TCR within two crystal forms
suggested a “scanning” motion of the TCR on pMHC that was
further supported and extended by molecular dynamics (MD)
studies (3, 18).

Due to crystal packing and data collection at cryogenic
temperatures, B-factors underrepresent the amplitude of
conformational populations (19). Thus, due to the failure of
current refinement algorithms to model structural heterogeneity,
the analysis of single, static crystallographic models can reveal
limited information on the dynamics of the system in solution
(20–22). However, there are examples where flexibility insight
has been successfully obtained and useful correlations made. For
example, B-factor analysis of structures of HLA-B∗35:01 and
HLA-B∗35:08, that differ by a single amino acid, but are bound
to the same Epstein-Barr virus (EBV) peptide (HPVG) provided
insights into the influence of MHC polymorphism on peptide
mobility and the T cell response (23). Likewise, the structural
comparison of a TCR in its unbound vs. pMHC-bound state
revealed a conformational change in the A-B loop of the Cα

domain that borders the CD3ε binding site (24) that was later
verified to correlate with pMHC ligation (25).

In addition to concealing flexibility, the X-ray structures
available are also incomplete and lack the core components
necessary for signal transduction (Figures 1B,C). While
the structures of TCR-pMHC, pMHC-CD8 (26–29), CD3
heterodimers (30–34), and CD8 homo/heterodimers (35, 36)
have been determined, critically informative complexes such
as CD8 and/or CD3 in complex with TCR-pMHC or even just
TCR-CD3 are lacking due to the poor affinity of soluble CD3
and CD8 for the TCR and MHC, respectively (33, 37, 38).
Also absent, due to technical challenges, are the stalk regions,
membrane-spanning domains, and intracellular tails of the
TCR, MHC, and CD8 and CD3 molecules, which play a role in
complex assembly, the spatial organization of the components
and signal transmission (39–46). Therefore, whilst X-ray
crystallography can yield highly informative, high-resolution
structures, its limitations necessitate the use of clever engineering
and complementary techniques to make the next leap in terms of
T cell signaling.

MOLECULAR DYNAMICS SIMULATIONS:
PRODUCING TESTABLE HYPOTHESES
AND PLACING EXPERIMENTAL FINDINGS
INTO A THEORETICAL FRAMEWORK

Although conventional X-ray crystallographic analysis provides
little information regarding dynamics, the exquisite resolution
as well as model completeness has provided a solid data
foundation that has spurned an increasing amount of MD
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FIGURE 2 | Combinations of biophysical, structural, and computational techniques are a necessity to overcome the limitations of each individual technique and to

rigorously understand the role of dynamics in TCR-pMHC function at the core of the immunological synapse. Biophysical techniques (yellow box), structural

techniques (light orange box), computational techniques (dark orange box).

simulation studies. All-atomMD simulations probe the flexibility
of the system by computing iterative solutions of Newton’s
equations of motion over time (47). The raw output of MD
simulations—trajectories, describe the atomic positions at time-
points during the simulation. Unfortunately however, MD
is computationally demanding and limits the technique to
examination of relatively short time spans (e.g., a microsecond),
orders of magnitude shorter than more biologically relevant
timescales over which many larger motions occur. The signal,
for example, produced following T cell recognition of a

pMHC is of the seconds to minutes timescale (48–52). Several
approaches have emerged that allow this limitation to be
mitigated somewhat and here we discuss briefly below the
most popular and useful approaches. Replica exchange MD
(REMD) can improve the sampling by simulating multiple
copies of the same molecule at different temperatures, allowing
an unbiased way of improving conformational sampling (53).
REMD is computationally intensive and therefore currently
limited to relatively small systems, for example to investigate
how polymorphic amino acid differences between allotypes alter
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the conformational plasticity of the MHC class I binding pocket
(54). Alternatively, steered MD (SMD) applies an external force
to the protein to study its mechanical response, analogous to
atomic force microscopy (55). This method is well suited to
studying protein-protein interactions, and has been used to
investigate TCR-pMHC dissociation (56–58). A novel use of
SMD simulations based on agonist and non-agonist complex
crystal structures was to develop a molecular model of TCR-
pMHC “catch bond” formation (12). Catch bonds represent a net
accumulation of molecular interactions under force, revealing an
additional level of dynamic diversity built-in as a proofreading
mechanism to link TCR recognition and subsequent activation.
The related approaches of targeted MD (TMD) and umbrella
sampling apply forces in order to promote new conformations,
and are used to predict a pathway between two known
conformations. Such “pulling” simulations, although not used to
study dynamics per se, have been used to estimate the binding
free energies between peptides and MHC (59). The atomic
complexity of the system can be reduced significantly using
coarse-grained (CG) methods in which groups of atoms are
replaced by beads, allowing longer simulations at the cost of fine
details (60). This approach is therefore useful for studying larger
complexes such as TCR-pMHC in membrane (61) and TCR-
pMHC-CD4 complexes (62). CG methods are complimentary to
atomistic simulations and offer a feasible approach to tackling
the combined challenges of large immune assemblies and long
timescales associated with changes in membrane morphology.
Accuracy of MD simulations are dependent upon available force
fields—mathematical-physical descriptions of a system used to
calculate the forces acting upon all atoms in order to solve
Newton’s equations of motion. Force fields, though improving
constantly, have known imperfections (63–65), so currently
it is preferable to seek experimental validation. Getting stuck
in local energy minima is a particular limitation, but energy
landscapes can be sampled more efficiently using advanced
adaptive sampling techniques such as Markov state models (66),
allowing the identification of metastable states.

In summary, MD simulation is an increasingly important
member of the toolbox, since it is particularly well suited to
producing experimentally testable hypotheses as well as placing
existing experimental findings into a theoretical framework.
Despite the advances in enhanced sampling methods and
possible simulation of larger complexes, MD simulations of
experimentally-determined TCR-pMHC structures have not
been widely adopted.

ENSEMBLE REFINEMENT: USING MD
SIMULATIONS TO EXTRACT DYNAMICS
FROM THE CRYSTALLINE STATE

Another way to explore protein dynamics from experimental
diffraction data is by simultaneously performing short molecular
dynamics simulations with structure refinement (20, 67, 68). This
method, known as ensemble refinement, produces an ensemble
of models of the same structure that provides extended biological
insight, often whilst improving the refinement statistics [i.e., free

R-factor (Rfree)]. Although the ensemble refinement method has
long been established and is well-validated (69–72), it is not
routinely incorporated as a tool to analyze the X-ray structures
of pMHC class I systems. This prompted our re-analysis of 11
published systems to reveal the dynamics present in the X-ray
data, revealing the benefits of incorporating ensemble refinement
to the structural interpretation (73).

A pertinent example of how ensemble refinement can extend
and enrich existing crystallographic interpretations relates to
the induced fit vs. conformational selection model of TCR
binding to pMHC. In the induced fit model, the TCR undergoes
a conformational change upon binding the pMHC, whereas
in the conformational selection model a conformation that
is compatible with binding is selected from an ensemble of
conformations (74). Borbulevych et al. (75) sought to understand
the causes of the cross-recognition of self- and non-self-peptides
by the A6 TCR, by comparing the structures of the self-peptide
HuD and the non-self-peptide Tax, both when bound to MHC
HLA-A∗02 alone and in a MHC-TCR complex. While the bound
conformations are very similar for both peptides, differences in
the orientation of the p3 and p5 side chains necessitate that
the HuD peptide must undergo a conformational change in
order to bind to the TCR (Figure 3A), while the Tax peptide
does not. Our ensemble results, however, show that the Tyr3
and Phe5 residues in the HuD peptide are flexible enough
to convert between the two conformations (Figure 3B). This
indicates that the differences found between the MHC and
TCR-pMHC conformations may be due to intrinsic flexibility
rather than any change elicited by binding itself, and suggests
that differences between static pMHC and TCR-pMHC may
be due to a combination of the inherent flexibilities of each
system, and the complexation process. Static structures may
bias the interpretation in favor of an induced fit mechanism,
whereas analysis as a conformational ensemble can allow also
for conformational selection. Furthermore, reliance on single
crystallographic structures of pMHC, with or without TCR,
entails pitfalls for understanding the rules of productive TCR
ligation, particularly for static interpretations involving fine
details such as interaction networks and side chain orientation.
Since in the worst cases, it may fail to properly distinguish real
results from noise, it supports a view that biological observations
should be explained through the properties of ensembles rather
than isolated structures, as these are less prone to observer bias.

FIGURE 3 | (A) Superposition of HuD-HLA peptide (red) (PDB ID 3PWL) and

TCR-HuD-HLA peptide (brown) (PDB ID 3PWP) showing putative TCR

binding-induced bond rotations. (B) Ensemble refinement show both these

variants occur in the pMHC ensemble. MHC α-helices have been omitted.
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While we tend to describe TCR binding to the pMHC as
either undergoing induced fit or conformational selection, the
likelihood is that the TCR binds through a combination of both
models. Scott et al. (6), highlight using time resolved fluorescence
measurements, MD and structural and thermodynamic data that
the CDR3 loops of a TCR can have varying degrees of flexibility.
In the case of the A6 TCR the CDR3β loop is highly flexible
and can rapidly sample ligands with a range of conformations,
whereas the CDR3α has a slower motion that restricts the
repertoire of peptides that it can bind. Therefore, the two models
are not necessarily mutually exclusive, but instead describe a
continuum (74).

Computing requirements of ensemble refinement are typically
much greater than for single structure analysis, likely explaining
the relatively slow adoption of this technique. However, continual
improvements in refinement software [notably Phenix, which
allows straightforward and user-friendly ensemble refinement
from a PC (76)] and hardware have now placed this technique
easily within the grasp of most structural immunologists. For
example, in a recent ensemble refinement analysis of pMHC
structures, refinement could be completed in <3 h for most
systems, using a typical off-the-shelf desktop computer (73).

NUCLEAR MAGNETIC RESONANCE
SPECTROSCOPY (NMR): ATOMISTIC
DYNAMICS IN SOLUTION

NMR measures the absorbance and re-emission of
electromagnetic radiation by nuclei in a magnetic field, and
has provided significant information on protein structure and
dynamics for the past 30 years. The use of NMR spectroscopy to
study pMHC dynamics is complicated by the relatively large size
of these systems (77), however several recent studies that have
characterized TCR-pMHC binding have all found that significant
conformational variation exists in the TCR, peptide, and MHC
(78). In addition to noting conformational changes at the TCR-
pMHC interface, conformational variation was also observed
at remote sites, including within the membrane-proximal Cβ

domain of the TCR, that implies an allosteric mechanism in
TCR signaling (79), and the β2m (β2-microglobulin) binding
site on the MHC that was sensitive to MHC polymorphism and
the bound peptide (80). Notably, each of these NMR studies
benefitted from mapping chemical shift perturbations onto
available X-ray structures, but revealed flexible regions not
otherwise observed from the X-ray structures alone. NMR has
also been used to validate MD predictions that show long-range
allosteric communication between the TCR binding sites for
pMHC and CD3, a key step in early T-cell activation (81). These
NMR studies reiterate the need to characterize the TCR-pMHC
system as an allosteric ensemble in which ligand binding alters
the energy landscape of the entire ensemble. In an allosteric
ensemble conformational changes that concurrently occur at
distal sites, but do not necessarily dominate the ensemble, can be
mapped to reveal cooperativity between sites, or dynamically-
driven allostery, revealing previously hidden and unforseen
insights into signal transmission (82–84).

FLUORESCENCE SPECTROSCOPY:
PROBING ENVIRONMENTAL DYNAMICS
AND DISTANCES

The intrinsic fluorescence of aromatic (usually tryptophan)
residues is sensitive to their environment, and can therefore
be used to monitor dynamics. Fluorescence anisotropy, in
particular, has become a powerful method with which to study
pMHC-TCR dynamics, especially when coupled with other
techniques (85–87). Dynamic insight has also been gained by
Förster resonance energy transfer (FRET), in which energy
transfered between a donor and an acceptor chromophore is used
to measure distances between chromophore-labeled residues
as a function of time, particularly powerful when combined
with structural techniques (88–90). An elegant example of
integrating experimental and computational approaches, from
the protein folding field, combined small molecule (sm) FRET
with advanced MD simulations and machine learning (91). Such
a combined approach has not yet been reported for pMHC-
TCR systems, but clearly holds much promise. Nevertheless,
there are other examples pertaining to the value of the use of
fluorescence to study pMHC-TCR systems. For example, site-
directed fluorescence labeling, in which an extrinsic fluorescent
probe is attached to a cysteine residue, has been used to note
that the A-B loop within the TCR Cα domain undergoes a
conformational change upon pMHC ligation (25). FRET has also
been used to measure intermolecular associations in live cells.
Yachi et al. (92) measured the molecular interaction between
TCR-CD3ζ and CD8 on antigen presenting cells loaded with
different peptides, revealing structurally similar peptides alter
the kinetics of the CD8-TCR interaction and translate into
differential T cell responses. Another study used a FRET sensor
to map the spatiotemporal dynamics of protein clustering in
live T cells, linking the molecular density of TCR clusters
with TCR triggering (93). Clearly, our understanding of TCR-
pMHC systems could benefit from the further integrated use
of intramolecular and intermolecular FRET sensors, particularly
when coupled with structural data.

HYDROGEN/DEUTERIUM (H/D)
EXCHANGE: SOLVENT ACCESSIBILITY
AND LOCAL DYNAMICS

H/D exchange involves a steady-state reaction in which
deuterium atoms replace covalently bonded hydrogen atoms that
are not participating in H-bonds. The rate of that exchange is
usually measured by mass spectrometry, providing information
on solvent accessibility and local dynamics. A study combining
H/D exchange, fluorescence anisotropy, and structural analyses,
showed that the flexibility of the peptide binding groove of
the class I MHC protein HLA-A∗02:01 varies significantly
with different peptides (85). Further evidence for the role of
conformational plasticity in peptide selection by MHC Class
I was revealed by comparing H/D exchange of two allotypes
in peptide-bound and free states (94). H/D exchange has also
been used to probe the dynamics at the TCR-pMHC interface,
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with several studies highlighting that conformational flexibility
is contingent upon the MHC allele (95), the bound peptide (85),
and upon TCR ligation (96) and all of which have implications
for T cell signaling.

SMALL ANGLE X-RAY SCATTERING
(SAXS): LOW RESOLUTION STRUCTURE
IN SOLUTION

Despite inherent limitations in resolution that can be achieved,
SAXS can be used to study the size, shape and assembly of
proteins, without the size limitations of other techniques such
as NMR (97). In a monodisperse solution, geometric parameters
such as the maximum particle dimension (Dmax), radius of
gyration (Rg), and the forward scattering intensity, I(0), can be
calculated from SAXS data; these values can serve as a point of
comparison with the dimensions provided by a crystal structure
or when studying the same protein under various experimental
conditions or in a liganded vs. unliganded state. For example,
in conjunction with other techniques and by comparing the
Rg of HLA-DR1 (MHC class II) bound to a wild-type peptide,
or a weak- or tight-binding peptide variant Yin et al. (98, 99)
correlated pMHC conformational differences with susceptibility
to peptide exchange by the non-classical MHC class II molecule
HLA-DM. In another pMHC class II system, SAXS was used
to show the pathogen-derived proteins, Salp15 and gp120,
caused binding-induced conformational changes in CD4 that
subsequently influence CD4+ T cell activation during infection
(100, 101).

SAXS can also be used to characterize polydisperse systems
such as modular proteins with flexible linkers or proteins
bearing disordered regions. The ensemble optimization method
(EOM) (102) is one approach to describe this experimental
SAXS data. It generates a pool of n independent models based
upon the sequence and structural information of the target
and then selects a subset of ensembles that best describe the
experimental SAXS data. The distributions of the properties of
the selected ensembles, including Rg (radius of gyration), Dmax

(maximum particle dimension), Rflex (measure of flexibility)
and Rσ (variance of the ensemble distribution with respect to
the original pool), can then be compared to those of the pool
of independent models to assess the flexibility of the system.
To the best of our knowledge EOM has not yet been used
to study TCR-pMHC systems, despite both MHCs and TCRs
being multidomain proteins with flexible linkers. It is thus highly
feasible the interdomain motions of these proteins are coupled
to binding events and are linked to signal transduction. On
that note, the flexible stalks of the TCR, MHC, CD8, and CD3
molecules also likely play a role.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Protein flexibility is inherent to protein structure and function,
and TCR-pMHC systems are no exception. Despite this the
systematic analysis of the flexibility of TCR-pMHC systems is

lagging far behind that of other fields (103–105), particularly
when it comes to integration of computational and experimental
techniques.

We propose that to advance our mechanistic understanding
of how TCR-pMHC engagement initiates intracellular signaling,
and the influence of the peptide on the signal, that there
needs to be a shift in our approach, both in terms of the
suite of techniques used to assess flexibility, and use of creative
engineering to surpass limitations specific to the molecules in
question and their applicability to a technique. Elegant examples
that illustrate the strength of this marriage are now emerging.
For example, Natarajan et al. (38) overcame the size barrier that
limits the study of the soluble TCR by NMR through the use of
perdeuteration, and concomitantly simplified the NMR spectra
using partial subunit labeling. This NMR approach combined
with mutagenesis, computational docking, and validation using
cell-based assays has enhanced our understanding of how the
extracellular engagement of the TCR-CD3 complex transmits
a signal. Likewise, Birnbaum et al. (106) implemented clever
strategies to circumvent size limitations and issues pertaining
to sample heterogeneity to use electron microscopy to observe
the molecular architecture of the membrane-associated TCR-
CD3 complex bound to pMHC. Using this approach combined
with SAXS they put forward a ligand-dependent dimerization
mechanism for TCR signaling in which flexibility plays a key role.

We also propose the ensemble refinement technique be
used routinely in the X-ray crystallographic analysis of TCR-
pMHC systems. The routine extraction of this data, and
validation/interpretation in conjunction with other experimental
techniques, some of which are summarized here, will provide
previously hidden insights into the scope of conformational
changes permissible by peptides when bound to MHC that
influence TCR binding and T cell activation and will also
reveal insights into how TCR flexibility and dynamically-driven
allostery play a role. This hitherto missing information will
enable us to more fully consider how a signal is transduced from
the pMHC interface via the CD3 subunits and to determine
how flexibility at the interface correlates with the degree of T
cell stimulation (79, 107). This may provide new insights into
how the T cell response can be therapeutically manipulated
to fight infections or cancer. For example, by considering
the flexibility of an MHC-bound peptide in conjunction with
other peptide characteristics (such as amino acid sequence,
prominence, solvent exposure, and affinity for MHC) we may
more accurately predict epitope immunogenicity, particularly
for neoantigen-based vaccine design (108–112). The use of
polypeptide vaccines bearing HLA-restricted CD8+ T cell
epitopes is fast gaining traction for cancer immunotherapy
(108, 113, 114). The aim is to vaccinate individuals with
mutated tumor-associated epitopes (mimotopes) that are then
presented by MHC and in doing so stimulate CD8+ T cells
that prevent tumor growth. Often mimotopes with enhanced
binding to MHC and/or altered TCR interactions elicit a
more effective tumor-specific T cell response (115–119) and
so their rational design, facilitated by accurately predicting
peptide immunogenicity (108, 120, 121), would be highly
beneficial.
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Likewise, the rational design, or engineering, of the antigen-
binding site of TCRs with the same specificity, but enhanced
affinity and kinetics for tumor antigens (which are mostly
self-derived), has practical implications for soluble TCR-based
therapy (113, 122) and adoptive T cell immunotherapies for
cancer (123, 124). Both approaches require the considered
engineering of high affinity TCRs that maintain their specificity
for target tumor antigens. Although this has been accomplished
using techniques such as directed evolution (125–130) and
structure-based design (58) these experimental approaches
are, in tandem, informing the development of computational
approaches to predict how tomanipulate TCR binding properties
(58, 128), and there are indications that the accuracy of these
computational approaches is enhanced by incorporating MD
simulations for the consideration of protein flexibility (129, 131).
However, application of simulation techniques lags markedly

behind other fields, so conceptual advances will require highly
integrated experimental and computational approaches to fully
understand, and exploit, the dynamics of the system.
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