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Abstract

Background and aims: Oxytocin, a nine amino acid peptide synthesised in the hypothalamus, has been widely
recognised for its role in anxiolysis, bonding, sociality, and appetite. It binds to the oxytocin receptor (OXTR)—a G-
protein coupled receptor—that is stimulated by the actions of oestrogen both peripherally and centrally. Studies
have implicated OXTR genotypes in conferring either a risk or protective effect in autism, schizophrenia, and eating
disorders (ED). There are numerous DNA variations of this receptor, with the most common DNA variation being in
the form of the single nucleotide polymorphisms (SNPs). Two OXTR SNPs have been most studied in relation to ED:
rs53576 and rs2254298. Each SNP has the same allelic variant that produces genotypes AA, AG, and GG. In this
critical review we will evaluate the putative role of rs53576 and rs2254298 SNPs in ED. Additionally, this narrative
review will consider the role of gene-environment interactions in the development of ED pathology.

Findings: The OXTR SNPs rs53576 and rs2254298 show independent associations between the A allele and
restrictive eating behaviours. Conversely, the G allele of the OXTR rs53576 SNP is associated with binging
behaviours, findings that were also evident in neuroanatomy. One study found the A allele of both OXTR SNPs to
confer risk for more severe ED symptomatology while the G allele conferred some protective effect. An interaction
between poor maternal care and rs2254298 AG/AA genotype conferred increased risk for binge eating and purging
in women.

Conclusions: Individual OXTR SNP are unlikely in themselves to explain complex eating disorders but may affect
the expression of and/or effectiveness of the OXTR. A growing body of G x E work is indicating that rs53576G
homozygosity becomes disadvantageous for later mental health under early adverse conditions but further research
to extend these findings to eating pathology is needed. The GWAS approach would benefit this area of knowledge.
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Plain English summary

Oxytocin is a chemical made in the brain that affects human behaviour in areas from anxiety, bonding right
through to appetite. Oxytocin works by binding to a specific cellular receptor. In humans, the genes that specify
this receptor are found in slightly different versions that are inherited from each parent. Research has suggested
that individuals who possess speicfic combinations of oxytocin receptor gene variants may be more susceptible to
certain kinds of mental illness. This paper considers two different versions of the oxytocin receptor gene most
studied in relation to eating disorders. The two different versions considered in this review do not seem to affect
the structure of the oxytocin receptor itself. Together, research indicates that the presence or absence of a
particular receptor gene variant in an individual might have some predictive capability in respect of potential
susceptibility to eating disorders. However, further research is necessary as some of the findings are contradictory.
In addition, environmental factors—such as poor maternal care early in life—have also been demonstrated to be
important in determining whether an individual will develop an eating disorder. Research in this area would benefit
from non-hypothesis driven studies.

Background
Overview of oxytocin
The nine-amino acid peptide oxytocin is synthesised
mainly in the hypothalamus and secreted directly within
the cerebrum but also released via the posterior pituitary
gland to regulate a range of physiologic and metabolic
processes [1]. Centrally, oxytocin has a wide distribution
and is recognised for its context-dependent behavioural
effects in mammals including anxiolysis, bonding, appe-
tite, and sociality [2].
Oxytocin is an anorectic with multifarious hypophagic

controls, including homeostatic satiety-related signalling
between the peripheral and central nervous system,
metabolic modulation, supraoptic nuclei metabolic feed-
back, and the reduction of feeding reward [3]. Blockade
of OXTR in mice results in hyperphagia [4]. Exogenous
oxytocin is an effective anorexiant in animals, both via
systemic administration [5–7] and intracerebroventricu-
lar (ICV) routes [8], which is reversed by antagonists [9–
11]. In men [12] and women [13], intranasal oxytocin in-
hibits postprandial snack intake.
The anorectic effects of chronic oxytocin administra-

tion have not been widely studied. However, repeated
ICV injections of oxytocin agonist (e-L-β-MePhe2) OT,
inhibited feeding in rats but also produced tolerance
[14]. In diet-induced obese rhesus monkeys, chronic
oxytocin across a four-week period effectively reduced
body mass [15]. However, chronic oxytocin in mice facil-
itated observational fear and downregulated oxytocin re-
ceptors in the amygdala without tolerance or reductions
in body mass, suggesting that oxytocin does not cause
organisms to lose weight beyond their limits [16]. In
obese humans, chronic oxytocin over an eight-week
period reversed obesity and prediabetic changes [17].
Studies in people with Prader Willi Syndrome who

have decreased oxytocin-producing neurons [18] and de-
creased functional OXTR [19], together with studies in
animals, have underlined the importance of oxytocin

and genetics in determining appetite and body mass. For
example, in Prader-Willi, both the size of the oxytocin-
containing paraventricular nucleus (PVN) and the
number of oxytocin neurons within it, are dramatically
reduced, which is thought to cause the dramatic hyper-
phagia seen with the syndrome [18]. Similarly, mice with
haploinsufficiency of the single-minded 1 gene that influ-
ences PVN maturation, develop extreme hyperphagia
and are susceptible to diet-induced obesity [4]. In the
PVN, expression of the synaptotagmin gene results in
synaptotagmin-4, a protein that negatively regulates
oxytocin release via exocytosis. Increased vesicle binding
of synaptotagmin-4 in oxytocin neurons is associated
with obesity and mice overexpressing synaptotagmin-4
are obesogenic in contrast to mice deficient in
synaptotagmin-4 that are resistant to diet-induced
obesity [20].
Oxytocin concentrations have been studied in rela-

tion to eating disorders. Low-weight women with an-
orexia nervosa (AN) have lower serum oxytocin
concentrations than healthy controls, and postprandial
oxytocin concentrations were associated with ED psy-
chopathology [21]. Additionally, functional magnetic
resonance imaging (fMRI) hypoactivation of relevant
neural reward and homeostatic circuitry was seen in
AN and weight-recovered AN, that was associated
with plasma concentration oxytocin and disordered
eating psychopathology [22, 23].

OXTR overview
There is evidence to support that sensitivity to oxytocin,
which is thought to be mediated by genetic and epigen-
etic alterations in the OXTR gene, might play a role in
criterion eating disorder behaviours [24]. The OXTR it-
self is a G-protein coupled receptor (GPCR) expressed
widely in the mammalian brain. The distribution pattern
of OXTR is species-specific and indicates the level of so-
ciability for a species. In solitary species, such as the
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montane vole, the expression of OXTR increases dra-
matically during the mating season to facilitate breeding
activities—including mate bonding and maternal care--
behaviours blocked by OXTR antagonists [25, 26]. The
striking cell-specific up- and downregulation of OXTRs
is atypical of the GPCR superfamily and also occurs in
females during parturition. The OXTR is stimulated by
oestrogen both peripherally and in central hypothalamic
sites with behavioural actions [27–29]; however, the de-
gree to which the OXTR is oestrogen sensitive remains
unclear [30]. Nonetheless, there are gender differences
in oxytocin function and OXTR expression [31–41].
In humans, the OXTR is located on chromosome

3p25, spanning 17 kb, and containing three introns and
four exons [31, 42]. The identified variations of the
OXTR are SNPs—the most common form of DNA vari-
ation—and occur when one nucleotide of a base pair is
replaced by another nucleotide. The two most studied
OXTR SNPs in relation to ED are rs53576 and
rs2254298, (see Table 1 for their genotypic distributions
across ethnicities), with two possible allelic variants,
guanine (G) and adenosine (A). An individual may in-
herit either the G or the A allele for each one of the
SNPs of the OXTR from each parent and, thus, an indi-
vidual would be homozygous if inheriting the same allele
from both parents (AA or GG) or heterozygous if differ-
ent alleles are inherited derived from each parent (AG).
There are, therefore, three genotypes for each of these
SNP: GG, AG, and AA. Since rs53576 and rs2254298 are
located in the non-coding third intron of the OXTR,
there is no effect in the expression of the OXTR protein.

OXTR gene in mental Health Research
Variations in the OXTR gene were first linked to human
mental health, specifically in autism research, that ex-
tended the work demonstrating the links between the

OXTR and sociability in voles. The hypothesis that vari-
ation in the OXTR was associated with deficits in social
behaviour was substantiated by a study linking rs53576
and rs2254298 to autism [43]. Despite inconsistent find-
ings from subsequent autism and OXTR studies,
research into the broader hypothesis that OXTR poly-
morphisms are associated with social dysfunction has in-
creased and has been extended to explain other
psychopathology, such as depression, schizophrenia and
ED, as well as general social functioning [44–47].

Genetic risk factor identification strategies
Broadly, there are two approaches for identifying genetic
risk factors associated to a specific phenotype. The first
is the candidate-gene approach, which investigates pre-
specified gene variations in relation to a specific pheno-
type. This hypothesis-driven approach differs from data-
driven genome-wide association studies (GWAS) and
quantitative trait locus mapping that analyse the DNA
sequence of the entire genome to identify genetic risk
factors for phenotypes, usually diseases that are common
in the population. Research into the OXTR and ED has
so far pursued only the candidate-gene approach. In
addition to common genetic variation, rare gene muta-
tion may identify critical mechanisms in pathology.
In addition to genetic variation, changes in the activity

of OXTR may be related to other non-genetic regulatory
mechanisms of transcription, such as DNA methyla-
tion—an epigenetic mechanism involving the transfer of
a methyl group onto the C5 position of the cytosine to
form 5-methylcytosine. Epigenomic changes might alter
DNA accessibility thereby regulating patterns of gene ex-
pression [48]. Consistent with an emerging field of
inquiry, functional studies have shown that differential
methylation of a CpG island in the OXTR promoter have
been reported in relation to disorders characterized by
impairments in social cognition, including Autistic
Spectrum Disorder, eating behaviour, such as anorexia
nervosa, and problems with facial and emotional recog-
nition [49–52]. However, taken together, these findings
are in pressing need of greater phenotypic precision and
methodological improvements including longitudinal
studies with multiple time-points, validation in larger
and more homogeneous samples, and measures of DNA
methylation status of other genes within the same func-
tional circuitry, such as the oxytocin transporter gene,
CD38 [53].

Aims and objectives
The aim of this critical review is to explore research into
OXTR rs53576 and rs2254298 SNPs and their role in
clinical and non-clinical samples with, or displaying be-
haviours characteristic of, AN, BN or binge-eating
disorder.

Table 1 Summary of Genotypic Distributions for OXTR rs53576
and rs2254298

Frequencies

Allele Genotype

rs53576

Population Number A G Number AA AG GG

African 1194 0.224 0.776 597 0.057 0.33 0.610

American 524 0.343 0.657 262 0,116 0.453 0.431

Asian 1144 0.684 0.316 662 0.472 0.423 0.105

European 1990 0.361 0.639 995 0.132 0.459 0.409

rs2254298

African 1112 0.238 0.762 561 0.053 0.370 0.577

American 524 0.240 0.760 262 0.083 0.315 0.602

Asian 968 0.322 0.678 484 0.101 0.441 0458

European 2318 0.107 0.893 1159 0.016 0.182 0.802
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Methods
Inclusion and exclusion criteria
Research was included in this review if it was written in
English, peer-reviewed and explored rs53576 or
rs2254298 and ED behaviours together (see Table 2 for a
summary of papers included and their main findings).
Both clinical and nonclinical populations were included,
and no date restrictions were imposed. Research explor-
ing other OXTR SNPs, the oxytocin gene itself, oxytocin
secretion, and oxytocin administration were excluded
from this review. Studies examining the OXTR gene and
parturition have also been excluded, given the upregula-
tion of oxytocin in the third trimester. Research that re-
lies on salivary or plasma oxytocin concentrations has
also been omitted as the validity of these measurements
is not decided.

Search strategy
Papers for inclusion were identified by searching the Sin-
gle Nucleotide Polymorphism Database (dbSNP) of Nu-
cleotide Sequence Variation [60] for studies using the
rs53576 [Homo sapiens] and rs2254298 [Homo sapiens]
classification, which returned 184 and 109 publications,
respectively. These publications were searched for stud-
ies that mentioned eating behaviour or eating disorders,
leaving only six studies. The GWAS Catalog [61] was
also searched for rs53576 and rs2254298, and neither
SNP was found. In addition, PubMed and Google
Scholar were searched for peer-reviewed articles using
the terms rs53576 OR rs2254298 OR oxytocin receptor

OR OXTR, AND eating disorder OR anorexia nervosa
OR bulimia nervosa OR binge/binging, but no additional
papers were found.

OTXR polymorphisms and eating disorders
Only six studies have addressed the association between
OXTR SNPs and ED behaviours: two in clinical cohorts
and two using ED pathology in the general population.
Despite this paucity of research, the emerging results are
broadly consistent.
A large-scale hypothesis-free investigation of pregnant

women from the Avon Longitudinal Study of Parents
and Children (ALSPAC) cohort found that participants
with the OXTR GG genotype in the rs53576 were more
likely to have self-induced vomiting or used laxatives for
weight loss [54]. However, results should be taken with
caution as these were the only significant findings
among 22 analyses conducted on the data and, therefore,
may be due to chance alone.
In a community sample comprised of 3698 women re-

cruited as part of the ALSPAC, Micali et al. investigated
the relationship between the OXTR SNPs rs53576 and
rs2254298, maternal care and eating behaviours [55].
The study concluded that regarding rs53576 variant, the
A allele negatively correlated with binging or purging
behaviours and that, conversely, women who were G ho-
mozygotes had increased odds of binging or purging be-
haviours (p = .01) The SNP rs2254298 was most strongly
associated with restrictive eating behaviour, in particular
the A allele, with A-allele carriers and homozygotes

Table 2 Population Characteristics and Key Findings in Studies of OXTR rs53576 or rs2254298 and ED behaviour

Review
Subsection

Authors Sample Summary of Study Findings - rs53576 Summary of Study Findings - rs225498

OXTR Variants
and ED

Connelly
et al. [54]

Community
sample of
females

GG genotype more likely to have engaged in vomiting
or laxative use as weight loss strategy

Micali
et al. [55]

Community
sample of
females

A allele negatively correlated to binging/purging
behaviours, GG genotype was at increased risk of
engaging in binging and purging

A allele carriers at increased odds of
restrictive eating/purging
A allele carriers who had experienced poor
maternal care at increased odds of binging
purging

Kim et al.
[56]

Females (age
range not
specified)
with AN, BN and
HC

G allele positively associated with BN, stronger
association observed in those with AG genotype

Acevedo
et al. [57]

Adult females
with AN, BN and
HC

Positive association between A allele carriers of either/both SNPs and severity of ED symptomatology
In those with previous AN, A allele carrier status increased severity of cognitions and eating
behaviours

Davis
et al. [58]

Community
sample of adults

No significant effects for either SNP

OXTR and
Brain
Structure/
Function

Sala et al.
[59]

Adult females
with, or
recovered from,
AN

Reduced activation of brain areas
underpinning social salience and reflection
observed in A allele carriers
Greater negative connectivity observed in A
allele carriers
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having increased odds of engaging in restrictive eating
and purging behaviours (p < .0001 and p = .03, respect-
ively). Poor maternal care was independently positively
associated with binging and purging but only interacted
significantly with the rs2254298 A allele, carriers of
which were four times more likely to engage in binging/
purging (p = .03). The study’s strengths lie in its large
sample size and longitudinal design, which allowed for
evaluation of eating behaviours over time; however, the
authors recognise that given the low frequency of certain
eating behaviours, the sample may not have been suffi-
ciently powered to identify small associations.
In a clinical sample of 90 women with bulimia nervosa

(BN) examining six OXTR SNPs, which included
rs53576 and rs2254298, the G allele of rs53576 was posi-
tively correlated with BN [56]. However, the authors ac-
knowledge that results were not corrected for multiple
testing and, had the alpha level been lowered, the signifi-
cant association between genotype and BN would have
disappeared. In addition, the heterozygous genotype
(AG) was more strongly associated with BN than the
homozygous (GG), creating interpretative difficulties in
asserting that the G allele confers risk for BN. No fur-
ther associations were found among genotype distribu-
tions or allele frequencies for the other OXTR gene
SNPs and AN or BN.
A study investigating the link between ED symptom-

atology and five OXTR SNPs in a sample of 124 females
with and without ED found a positive correlation be-
tween rs53576 and rs2254298 in the A-allele carriers
and the severity of ED symptomatology [57]. Moreover,
for individuals with a previous history of AN, carrying at
least one copy of the A allele for both the rs53576 and
rs2254298 SNPs, was associated with increased ED
symptom severity in relation to both cognition and eat-
ing behaviours. This finding also suggests that rs53576-
rs2254298 GG/GG haplotypes may confer some protect-
ive effect as evidenced by lower reported anxiety and
preoccupation with body and food in both healthy con-
trols and those with a previous history of AN and in
weight recovery.
A further exploratory study in a community sample of

460 adults examined the association between overeating
and seven OXTR SNPs, including rs53576 and
rs2254298, reported no significant effects with respect to
either SNP [58]. However, linkage disequilibrium ana-
lysis revealed that within a four SNP haplotype, the G-
T-A-G haplotype formed of the rs237885, rs2268493,
rs2268494 and rs2254298 respectively, was associated
with higher food preference scores. Food preference
scores were a measure of preference of high fat and/or
sugar foods—those characteristic of a binge—thus it may
be inferred that the G allele of rs225498 somewhat con-
tributes to the risk of binging behaviours.

OXTR polymorphisms and brain structure/function
Only one brain imaging study has so far examined the
OXTR rs53576 or rs2254298 and ED (see Table 2).
Using fMRI, Sala et al. evaluated neural responses to a
social attribution task in adult women with, or recovered
from, AN [60]. In line with the finding that rs2254298
AG or AA genotypes were associated with restrictive
eating behaviours [55], females with AN had reduced ac-
tivation of brain areas subserving social salience and re-
flection during a social attribution task [59]. Specifically,
reduced activation of principal components of the de-
fault mode network (medial prefrontal cortex, posterior
cingulate cortex, and precuneus) that underpin intro-
spective decision-making and thinking about self or
others was seen in rs2254298 A carriers relative to
rs2254298 G homozygotes. In addition, negative con-
nectivity among the posterior cingulate cortex, the oc-
cipital lobe and the cerebellum was greater in rs2254298
A heterozygotes than in rs2254298 GG homozygotes,
meaning activation patterns in areas associated with
bottom-up attention, vision and voluntary body move-
ment were negatively correlated. However, data from
this study may not be reliable due to its small sample
size and unequal group numbers.

Gene-environment interactions in ED
If an increased risk for a phenotype is conferred by an
environmental factor, then a gene by environment (G x
E) interaction applies. Only Micali et al. in their above-
mentioned study also addressed G x E interactions in re-
lation to a disordered eating phenotype [55]. They found
that, although the rs2254298 AA or AG genotypes were
associated with restrictive eating behaviour, when poor
maternal care was present, rs2254298 AA or AG geno-
types had a four-fold increase in the odds of binge eating
and purging (p = .03) [55].
A number of environmental factors that relate indir-

ectly to ED or allied phenotypes, such as obesity, have
also been explored via G x E studies of the OXTR
rs53576 and rs2254298 SNPs. A longitudinal study of
192 children examined OXTR rs53576 and its inter-
action with socioeconomic status to predict the risk of
childhood obesity [61]. Authors found that the A allele
of rs53567 predicted body mass when socioeconomic
status was accounted for [62]. This finding reinforces
oxytocin’s role in factors that might drive childhood
obesity such as metabolic regulation, appetite, and
reward-driven eating processes and underlines the im-
portance of studying genetic predispositions to health
outcomes. Promising interactions between childhood ad-
versity and rs53576 on later development of psychopath-
ology have been described in three separate G x E
studies [63–65]. Although these interactions were not
replicated in a later study [66], the neurostructural and

Burmester et al. Journal of Eating Disorders            (2021) 9:85 Page 5 of 9



functional underpinnings of this OXTR rs53576 × child-
hood adversity interaction have been investigated using
fMRI and found to map to the ventral striatum in the re-
ward area of the brain [67]. In GG homozygotes, ventral
striatum grey matter volume negatively correlated with
the degree of childhood maltreatment, but this detri-
mental outcome was not seen in A-allele carriers [56].
Interestingly, a review discussing early-life caregiver
deprivation and the later development of depression
proposed a role for the ventral striatum [68]. Given the
role of oxytocin in childhood bonding [24, 69–81], these
findings are, perhaps, unsurprising. However, attachment
and early years’ experiences are also established risk fac-
tors for the development of ED [82–86], so further re-
search to investigate the impact of the interaction of
OXTR polymorphisms and childhood environment on
eating behaviours would be useful.

Limitations
There are a number of difficulties regarding reliability,
interpretation, and validity of candidate-gene association
studies. Results are often not replicated, and it is not
known how often failure to replicate has resulted in fail-
ure to publish. In addition, small sample sizes in both
original and replication studies create problems of lack
of power highlighted as particular problem for both
candidate-gene research and neuroscience [87].
There are specific issues pertaining to candidate-gene

research using OXTR SNPs. Few studies compare data
between women and men, despite evidence of sex-
specific effects [88–91] and few studies account for eth-
nicity, although the minor allele for rs53576 is different
in Caucasian and Asian groups. In addition, the same
outcomes are rarely measured, making the comparison
of results difficult.

Conclusion
Understanding an aetiologic role for oxytocin in the de-
velopment of ED is important, not only for researchers,
but also for clinicians and patients, with potential new
treatment avenues becoming an option for the latter
group. However, despite the association of rs53576 and
rs2254298 with eating patterns in a non-clinical popula-
tion study, so far, these SNPs have not been identified in
genome-wide association studies examining eating be-
haviours or obesity. Individual OXTR SNPs are unlikely
in themselves to explain complex eating disorders but
may form part of a haplotype with other OXTR SNPs to
affect the expression of and/or effectiveness of the
OXTR. A growing body of G x E work is indicating that
rs53576G homozygosity becomes disadvantageous for
later mental health under early adverse conditions but
further research to extend these findings to eating path-
ology is needed. Eating disorders are not genetic

monoliths but complex behaviours arising from
multigenetic-environment interactions over time and the
GWAS approach would benefit this area of knowledge.
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